412 research outputs found

    Asymmetry Dependence of the Nuclear Caloric Curve

    Get PDF
    A basic feature of the nuclear equation of state is not yet understood: the dependence of the nuclear caloric curve on the neutron-proton asymmetry. Predictions of theoretical models differ on the magnitude and even the sign of this dependence. In this work, the nuclear caloric curve is examined for fully reconstructed quasi-projectiles around mass A=50. The caloric curve extracted with the momentum quadrupole fluctuation thermometer shows that the temperature varies linearly with quasi-projectile asymmetry (N-Z)/A. An increase in asymmetry of 0.15 units corresponds to a decrease in temperature on the order of 1 MeV. These results also highlight the importance of a full quasi-projectile reconstruction in the study of thermodynamic properties of hot nuclei

    Effective Field Theory for Dilute Fermions with Pairing

    Get PDF
    Effective field theory (EFT) methods for a uniform system of fermions with short-range, natural interactions are extended to include pairing correlations, as part of a program to develop a systematic Kohn-Sham density functional theory (DFT) for medium and heavy nuclei. An effective action formalism for local composite operators leads to a free-energy functional that includes pairing by applying an inversion method order by order in the EFT expansion. A consistent renormalization scheme is demonstrated for the uniform system through next-to-leading order, which includes induced-interaction corrections to pairing.Comment: 31 pages, 10 figures, affiliation updated, paper unchange

    Observation of Scaling Violations in Scaled Momentum Distributions at HERA

    Get PDF
    Charged particle production has been measured in deep inelastic scattering (DIS) events over a large range of xx and Q2Q^2 using the ZEUS detector. The evolution of the scaled momentum, xpx_p, with Q2,Q^2, in the range 10 to 1280 GeV2GeV^2, has been investigated in the current fragmentation region of the Breit frame. The results show clear evidence, in a single experiment, for scaling violations in scaled momenta as a function of Q2Q^2.Comment: 21 pages including 4 figures, to be published in Physics Letters B. Two references adde

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search is presented for physics beyond the standard model (BSM) in final states with a pair of opposite-sign isolated leptons accompanied by jets and missing transverse energy. The search uses LHC data recorded at a center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to an integrated luminosity of approximately 5 inverse femtobarns. Two complementary search strategies are employed. The first probes models with a specific dilepton production mechanism that leads to a characteristic kinematic edge in the dilepton mass distribution. The second strategy probes models of dilepton production with heavy, colored objects that decay to final states including invisible particles, leading to very large hadronic activity and missing transverse energy. No evidence for an event yield in excess of the standard model expectations is found. Upper limits on the BSM contributions to the signal regions are deduced from the results, which are used to exclude a region of the parameter space of the constrained minimal supersymmetric extension of the standard model. Additional information related to detector efficiencies and response is provided to allow testing specific models of BSM physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO

    Is American Public Administration Detached From Historical Context?: On the Nature of Time and the Need to Understand It in Government and Its Study

    Get PDF
    The study of public administration pays little attention to history. Most publications are focused on current problems (the present) and desired solutions (the future) and are concerned mainly with organizational structure (a substantive issue) and output targets (an aggregative issue that involves measures of both individual performance and organizational productivity/services). There is much less consideration of how public administration (i.e., organization, policy, the study, etc.) unfolds over time. History, and so administrative history, is regarded as a “past” that can be recorded for its own sake but has little relevance to contemporary challenges. This view of history is the product of a diminished and anemic sense of time, resulting from organizing the past as a series of events that inexorably lead up to the present in a linear fashion. To improve the understanding of government’s role and position in society, public administration scholarship needs to reacquaint itself with the nature of time.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    CUORE: The first bolometric experiment at the ton scale for the search for neutrino-less double beta decay

    Get PDF
    The Cryogenic Underground Observatory for Rare Events (CUORE) is the most massive bolometric experiment searching for neutrino-less double beta (0νββ) decay. The detector consists of an array of 988 TeO crystals (742 kg) arranged in a compact cylindrical structure of 19 towers. This paper will describe the CUORE experiment, including the cryostat, and present the detector performance during the first year of running. Additional detail will describe the effort made in improving the energy resolution in the Te 0νββ decay region of interest (ROI) and the suppression of backgrounds. A description of work to lower the energy threshold in order to give CUORE the sensitivity to search for other rare events, such as dark matter, will also be provided. 2 13

    Perspectives of lowering CUORE thresholds with Optimum Trigger

    Get PDF
    CUORE is a cryogenic experiment that focuses on the search of neutrinoless double beta decay in 130Te and it is located at the Gran Sasso National Laboratories. Its detector consists of 988 TeO2 crystals operating at a base temperature of ~10 mK. It is the first ton-scale bolometric experiment ever realized for this purpose. Thanks to its large target mass and ultra-low background, the CUORE detector is also suitable for the search of other rare phenomena. In particular the low energy part of the spectra is interesting for the detection of WIMP-nuclei scattering reactions. One of the most important requirements to perform these studies is represented by the achievement of a stable energy threshold lower than 10 keV. Here, the CUORE capability to accomplish this purpose using a low energy software trigger will be presented and described

    CUORE and CUORE-0 experiments

    Get PDF
    Neutrino oscillation experiments proved that neutrinos have mass and this enhanced the interest in neutrinoless double-beta decay (0vßß). The observation of this very rare hypothetical decay would prove the leptonic number violation and would give us indications about neutrinos mass hierarchy and absolute mass scale. CUORE (Cryogenic Underground Observatory for Rare Events) is an array of 988 crystals of TeO2, for a total sensitive mass of 741 kg. Its goal is the observation of 0vßß of 130Te. The crystals, placed into the a dilution cryostat, are operated as bolometers at a temperature close to 10 mK. CUORE commissioning phase has been concluded recently in Gran Sasso National Laboratory, Italy, and data taking is expected to start in spring 2017. If target background rate is reached (0.01counts/day/keV/kg), the sensibility of CUORE will be, in five years of data taking, T1/21026years (1? CL). In order to test the quality of materials and optimize the construction procedures, the collaboration realized CUORE-0, that took data from spring of 2013 to summer 2015. Here, after a brief description of CUORE, I report its commissioning status and CUORE-0 results
    corecore