289 research outputs found

    Dexfenfluramine and the oestrogen-metabolizing enzyme CYP1B1 in the development of pulmonary arterial hypertension

    Get PDF
    <p>Aims: Pulmonary arterial hypertension (PAH) occurs more frequently in women than men. Oestrogen and the oestrogen-metabolising enzyme cytochrome P450 1B1 (CYP1B1) play a role in the development of PAH. Anorectic drugs such as dexfenfluramine (Dfen) have been associated with the development of PAH. Dfen mediates PAH via a serotonergic mechanism and we have shown serotonin to up-regulate expression of CYP1B1 in human pulmonary artery smooth muscle cells (PASMCs). Thus here we assess the role of CYP1B1 in the development of Dfen-induced PAH.</p> <p>Methods and results: Dfen (5 mg kg−1 day−1 PO for 28 days) increased right ventricular pressure and pulmonary vascular remodelling in female mice only. Mice dosed with Dfen showed increased whole lung expression of CYP1B1 and Dfen-induced PAH was ablated in CYP1B1−/− mice. In line with this, Dfen up-regulated expression of CYP1B1 in PASMCs from PAH patients (PAH-PASMCs) and Dfen-mediated proliferation of PAH-PASMCs was ablated by pharmacological inhibition of CYP1B1. Dfen increased expression of tryptophan hydroxylase 1 (Tph1; the rate-limiting enzyme in the synthesis of serotonin) in PAH-PASMCs and both Dfen-induced proliferation and Dfen-induced up-regulation of CYP1B1 were ablated by inhibition of Tph1. 17β-Oestradiol increased expression of both Tph1 and CYP1B1 in PAH-PASMCs, and Dfen and 17β-oestradiol had synergistic effects on proliferation of PAH-PASMCs. Finally, ovariectomy protected against Dfen-induced PAH in female mice.</p> <p>Conclusion: CYP1B1 is critical in the development of Dfen-induced PAH in mice in vivo and proliferation of PAH-PASMCs in vitro. CYP1B1 may provide a novel therapeutic target for PAH.</p&gt

    Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers

    Get PDF
    Tumor genetics guides patient selection for many new therapies, and cell culture studies have demonstrated that specific mutations can promote metabolic phenotypes. However, whether tissue context defines cancer dependence on specific metabolic pathways is unknown. Kras activation and Trp53 deletion in the pancreas or the lung result in pancreatic ductal adenocarinoma (PDAC) or non-small cell lung carcinoma (NSCLC), respectively, but despite the same initiating events, these tumors use branched-chain amino acids (BCAAs) differently. NSCLC tumors incorporate free BCAAs into tissue protein and use BCAAs as a nitrogen source, whereas PDAC tumors have decreased BCAA uptake. These differences are reflected in expression levels of BCAA catabolic enzymes in both mice and humans. Loss of Bcat1 and Bcat2, the enzymes responsible for BCAA use, impairs NSCLC tumor formation, but these enzymes are not required for PDAC tumor formation, arguing that tissue of origin is an important determinant of how cancers satisfy their metabolic requirements.National Institutes of Health (U.S.) (Grant F30CA183474)National Institutes of Health (U.S.) (Grant T32GM007753

    Outbreak of Neisseria meningitidis capsular group W among scouts returning from the World Scout Jamboree, Japan, 2015

    Get PDF
    The 23rd World Scout Jamboree was held in Japan from 28 July to 8 August 2015 and was attended by over 33,000 scouts from 162 countries. An outbreak of invasive meningococcal disease capsular group W was investigated among participants, with four confirmed cases identified in Scotland, who were all associated with one particular scout unit, and two confirmed cases in Sweden; molecular testing showed the same strain to be responsible for illness in both countries. The report describes the public health action taken to prevent further cases and the different decisions reached with respect to how wide to extend the offer of chemoprophylaxis in the two countries; in Scotland, chemoprophylaxis was offered to the unit of 40 participants to which the four cases belonged and to other close contacts of cases, while in Sweden chemoprophylaxis was offered to all those returning from the Jamboree. The report also describes the international collaboration and communication required to investigate and manage such multinational outbreaks in a timely manner

    Appropriateness of acute admissions and last in-patient day for patients with long term neurological conditions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To examine the appropriateness of admissions and in-patient stay for patients with long term neurological conditions (LTNCs). To identify variables predictive of appropriateness and explore management alternatives.</p> <p>Methods</p> <p>Adults admitted as acute patients to Derby Hospitals NHS Foundation Trust (England). Data were collected prospectively and examined by a multi-disciplinary expert panel to determine the appropriateness of admission and length of stay (LoS). Management alternatives were discussed.</p> <p>Results</p> <p>A total of 119 participants were recruited. 32 admissions were inappropriate and 83 were for an inappropriate duration. Whether a participant lived in their own home was predictive of an inappropriate admission. The number of LTNCs, number of presenting complaints and whether the participant lived alone in their own home were predictive of an inappropriate LoS. For admissions judged to be inappropriate, the panel suggested management alternatives.</p> <p>Conclusion</p> <p>Patients with LTNCs are being admitted to hospital when other services, e.g. ambulatory care, are available which could meet their needs. Inefficiencies in hospital procedures, such as discharge planning and patient transfers, continue to exist. Recognition of the need to plan for discharge at admission and to ensure in-patient services are provided in a timely manner may contribute towards improved efficiency.</p

    Dysregulated fibronectin trafficking by Hsp90 inhibition restricts prostate cancer cell invasion

    Get PDF
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.The molecular chaperone Hsp90 is overexpressed in prostate cancer (PCa) and is responsible for the folding, stabilization and maturation of multiple oncoproteins, which are implicated in PCa progression. Compared to first-in-class Hsp90 inhibitors such as 17-allylamino-demethoxygeldanamycin (17-AAG) that were clinically ineffective, second generation inhibitor AUY922 has greater solubility and efficacy. Here, transcriptomic and proteomic analyses of patient-derived PCa explants identified cytoskeletal organization as highly enriched with AUY922 treatment. Validation in PCa cell lines revealed that AUY922 caused marked alterations to cell morphology, and suppressed cell motility and invasion compared to vehicle or 17-AAG, concomitant with dysregulation of key extracellular matrix proteins such as fibronectin (FN1). Interestingly, while the expression of FN1 was increased by AUY922, FN1 secretion was significantly decreased. This resulted in cytosolic accumulation of FN1 protein within late endosomes, suggesting that AUY922 disrupts vesicular secretory trafficking pathways. Depletion of FN1 by siRNA knockdown markedly reduced the invasive capacity of PCa cells, phenocopying AUY922. These results highlight a novel mechanism of action for AUY922 beyond its established effects on cellular mitosis and survival and, furthermore, identifies extracellular matrix cargo delivery as a potential therapeutic target for the treatment of aggressive PCa

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    A Novel Role for MAPKAPK2 in Morphogenesis during Zebrafish Development

    Get PDF
    One of the earliest morphogenetic processes in the development of many animals is epiboly. In the zebrafish, epiboly ensues when the animally localized blastoderm cells spread, thin over, and enclose the vegetally localized yolk. Only a few factors are known to function in this fundamental process. We identified a maternal-effect mutant, betty boop (bbp), which displays a novel defect in epiboly, wherein the blastoderm margin constricts dramatically, precisely when half of the yolk cell is covered by the blastoderm, causing the yolk cell to burst. Whole-blastoderm transplants and mRNA microinjection rescue demonstrate that Bbp functions in the yolk cell to regulate epiboly. We positionally cloned the maternal-effect bbp mutant gene and identified it as the zebrafish homolog of the serine-threonine kinase Mitogen Activated Protein Kinase Activated Protein Kinase 2, or MAPKAPK2, which was not previously known to function in embryonic development. We show that the regulation of MAPKAPK2 is conserved and p38 MAP kinase functions upstream of MAPKAPK2 in regulating epiboly in the zebrafish embryo. Dramatic alterations in calcium dynamics, together with the massive marginal constrictive force observed in bbp mutants, indicate precocious constriction of an F-actin network within the yolk cell, which first forms at 50% epiboly and regulates epiboly progression. We show that MAPKAPK2 activity and its regulator p38 MAPK function in the yolk cell to regulate the process of epiboly, identifying a new pathway regulating this cell movement process. We postulate that a p38 MAPKAPK2 kinase cascade modulates the activity of F-actin at the yolk cell margin circumference allowing the gradual closure of the blastopore as epiboly progresses

    Updated guidance on the management of COVID-19:from an American Thoracic Society/European Respiratory Society coordinated International Task Force (29 July 2020)

    Get PDF
    BACKGROUND: Coronavirus disease 2019 (COVID-19) is a disease caused by severe acute respiratory syndrome-coronavirus-2. Consensus suggestions can standardise care, thereby improving outcomes and facilitating future research. METHODS: An International Task Force was composed and agreement regarding courses of action was measured using the Convergence of Opinion on Recommendations and Evidence (CORE) process. 70% agreement was necessary to make a consensus suggestion. RESULTS: The Task Force made consensus suggestions to treat patients with acute COVID-19 pneumonia with remdesivir and dexamethasone but suggested against hydroxychloroquine except in the context of a clinical trial; these are revisions of prior suggestions resulting from the interim publication of several randomised trials. It also suggested that COVID-19 patients with a venous thromboembolic event be treated with therapeutic anticoagulant therapy for 3 months. The Task Force was unable to reach sufficient agreement to yield consensus suggestions for the post-hospital care of COVID-19 survivors. The Task Force fell one vote shy of suggesting routine screening for depression, anxiety and post-traumatic stress disorder. CONCLUSIONS: The Task Force addressed questions related to pharmacotherapy in patients with COVID-19 and the post-hospital care of survivors, yielding several consensus suggestions. Management options for which there is insufficient agreement to formulate a suggestion represent research priorities.status: Published onlin

    Calcium Dependent CAMTA1 in Adult Stem Cell Commitment to a Myocardial Lineage

    Get PDF
    The phenotype of somatic cells has recently been found to be reversible. Direct reprogramming of one cell type into another has been achieved with transduction and over expression of exogenous defined transcription factors emphasizing their role in specifying cell fate. To discover early and novel endogenous transcription factors that may have a role in adult-derived stem cell acquisition of a cardiomyocyte phenotype, mesenchymal stem cells from human and mouse bone marrow and rat liver were co-cultured with neonatal cardiomyocytes as an in vitro cardiogenic microenvironment. Cell-cell communications develop between the two cell types as early as 24 hrs in co-culture and are required for elaboration of a myocardial phenotype in the stem cells 8-16 days later. These intercellular communications are associated with novel Ca(2+) oscillations in the stem cells that are synchronous with the Ca(2+) transients in adjacent cardiomyocytes and are detected in the stem cells as early as 24-48 hrs in co-culture. Early and significant up-regulation of Ca(2+)-dependent effectors, CAMTA1 and RCAN1 ensues before a myocardial program is activated. CAMTA1 loss-of-function minimizes the activation of the cardiac gene program in the stem cells. While the expression of RCAN1 suggests involvement of the well-characterized calcineurin-NFAT pathway as a response to a Ca(2+) signal, the CAMTA1 up-regulated expression as a response to such a signal in the stem cells was unknown. Cell-cell communications between the stem cells and adjacent cardiomyocytes induce Ca(2+) signals that activate a myocardial gene program in the stem cells via a novel and early Ca(2+)-dependent intermediate, up-regulation of CAMTA1

    Hypothesis-driven genome-wide association studies provide novel insights into genetics of reading disabilities

    Get PDF
    Peer reviewe
    corecore