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ARTICLE OPEN

Hypothesis-driven genome-wide association studies provide
novel insights into genetics of reading disabilities
Kaitlyn M. Price1,2,3, Karen G. Wigg1, Else Eising 4, Yu Feng1, Kirsten Blokland2, Margaret Wilkinson2, Elizabeth N. Kerr5,6,
Sharon L. Guger5, Quantitative Trait Working Group of the GenLang Consortium*, Simon E. Fisher 4,7, Maureen W. Lovett2,6,
Lisa J. Strug8,9 and Cathy L. Barr 1,2,3✉
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Reading Disability (RD) is often characterized by difficulties in the phonology of the language. While the molecular mechanisms
underlying it are largely undetermined, loci are being revealed by genome-wide association studies (GWAS). In a previous GWAS for
word reading (Price, 2020), we observed that top single-nucleotide polymorphisms (SNPs) were located near to or in genes involved
in neuronal migration/axon guidance (NM/AG) or loci implicated in autism spectrum disorder (ASD). A prominent theory of RD
etiology posits that it involves disturbed neuronal migration, while potential links between RD-ASD have not been extensively
investigated. To improve power to identify associated loci, we up-weighted variants involved in NM/AG or ASD, separately, and
performed a new Hypothesis-Driven (HD)–GWAS. The approach was applied to a Toronto RD sample and a meta-analysis of the
GenLang Consortium. For the Toronto sample (n= 624), no SNPs reached significance; however, by gene-set analysis, the joint
contribution of ASD-related genes passed the threshold (p~1.45 × 10–2, threshold = 2.5 × 10–2). For the GenLang Cohort
(n= 26,558), SNPs in DOCK7 and CDH4 showed significant association for the NM/AG hypothesis (sFDR q= 1.02 × 10–2). To make
the GenLang dataset more similar to Toronto, we repeated the analysis restricting to samples selected for reading/language deficits
(n= 4152). In this GenLang selected subset, we found significant association for a locus intergenic between BTG3-C21orf91 for both
hypotheses (sFDR q < 9.00 × 10–4). This study contributes candidate loci to the genetics of word reading. Data also suggest that,
although different variants may be involved, alleles implicated in ASD risk may be found in the same genes as those implicated in
word reading. This finding is limited to the Toronto sample suggesting that ascertainment influences genetic associations.
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INTRODUCTION
Reading Disability (RD), also known as developmental dyslexia, is a
neurodevelopmental disorder affecting children globally. In North
America alone, it affects 5–7% of individuals [1–6]. RD is
characterized by difficulties with word reading and spelling,
despite typical intelligence and motivation to learn [7]. Affected
children often have comorbid neurodevelopmental disorders,
including language or speech impairments, or attention-deficit/
hyperactivity disorder (ADHD) [8]. These factors increase social
difficulties, decrease self-esteem, and hinder academic/occupa-
tional success [9–12]. RD, therefore, represents a major public
health concern.
The genetics and underlying mechanisms of RD are not fully

known. Twin and family studies initially demonstrated genetic
contributions to RD by examining heritability within families
[3, 13]. Researchers went on to identify specific chromosomal
regions and genes implicated in RD via linkage analysis followed

by fine-mapping association studies. These linked regions and
genes were supported, to varying degrees, by independent
studies [14] and meta-analyses [15–20]; however, sample sizes
were small by current standards yielding low power and elevated
risk of false-positive findings. Moreover, some results could not be
replicated [16, 21, 22]. Therefore, researchers called into question
the robustness of the genes as candidates for involvement in RD.
Despite these caveats, a number of candidate genes identified

from linkage/fine-mapping studies (KIAA0319, KIAA0319L, DCDC2,
DNAAF4 (previously called DYX1C1 and EKN1), and ROBO1) were
linked to neuronal migration, suggesting a potential molecular
mechanism (but for a critical review see [23]). These associations
were pertinent as previous postmortem brain studies (n < 10)
found heterotopias and cortical dysplasias, signatures of altered
migration, in RD-affected individuals [24, 25]. It was theorized that
disrupted neuronal migration (DNM) may be involved in RD
etiology [26, 27].
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The first evidence to implicate allelic variation of these RD
candidate genes in DNM came from studies finding that protein
motifs/domains encoded by the genes were predicted to function
in migration [28–32]. Further evidence emerged from in utero
knockdown experiments of the genes (KIAA0319, KIAA0319L,
DCDC2, and DNAAF4/DYX1C1) in the developing brains of mice or
rats. When gene expression was reduced, neural cells did not
migrate as expected from the lower ventricular zone to the higher
cortical plate [33–38]. Instead, most cells remained in the
ventricular or intermediate zones, indicating disrupted migration,
albeit with different patterns of disruption for different genes
[33–38]. Experiments in which the candidate genes were over-
expressed also resulted in neural phenotypes, including aberrant
neurite outgrowth (Dcdc2) [39], delayed radial migration
(Kiaa0319) [40], and altered axon growth and regeneration
(Kiaa0319) [41].
There was, however, skepticism regarding the proposed roles of

these genes in migration, when independent knockout experi-
ments did not replicate the results of the knockdown studies
[23, 40, 42–44]. Discrepancies between knockout and knockdown
findings may be due to developmental compensation by altered
gene expression [45, 46]. For example, data from Dcdc2 knockout
mice supports partial redundancy with Dcx, a member of the same
gene family, which functionally compensates for the loss of Dcdc2
[43]. Overall, it remains unclear at this time whether the candidate
genes in question are indeed implicated in RD and if this involves
effects on neuronal migration [23].
To further identify genes implicated in RD, and as the

available techniques advanced, the field moved away from
linkage analysis in families to genome-wide association studies
(GWAS) -- a more powerful approach for complex traits in which
effect sizes of individual risk variants are small. In the last few
years, GWAS for RD, reading performance, and/or reading-
related tasks have begun to yield results with genome-wide
statistical significance (SNP-based analysis (p~10–8) [47–50];
gene-based analysis (p~10–6) [51–53]). Across recent significant
and previous non-significant GWAS findings, a number of the
top genes are thought to be involved in neuronal migration/
axon pathfinding, potentially supporting the DNM hypothesis.
For example, in a GWAS by Price et al., 2020, using two samples,
the Toronto (n= 624) and Philadelphia Neurodevelopmental
Cohort (n= 4430), the most significant SNP (p < 5 × 10–7) in the
Toronto sample was located in an intron of ARHGAP23, a gene
involved in actin cytoskeleton polymerization/reorganization,
neuronal development, and other growth cone/axon related
processes [54]. Across both samples in that study, when top-
ranked SNPs, at a less stringent p-value threshold (p~10–5),
were mapped into or near close proximity genes, additional
genes were found to have been previously related to neuronal
migration/axon guidance (NM-AG) (as well as growth cone
formation which is encompassed within this term). For example,
ASTN2, CNTN, TUBB3, NRCAM, DSCAM, UNC5D, and GAP43 [53].
Larger GWAS studies also provided weak support for the DNM
hypothesis. A meta-analysis of 22 samples (n~34,000) by the
GenLang Consortium, identified genome-wide significant var-
iants in DOCK7 associated with word reading [47]. DOCK7 is
critical for cortical neurogenesis, axon formation, and neural
polarization [55]. In the largest GWAS study to date, analyzing
the 23andMe cohort, the authors identified 42 significant loci
associated with self-reported dyslexia (ncases~51,000) of which
genes had been previously related to NM/AG [48] (Nature
Genetics, in press https://doi.org/10.1101/2021.08.20.21262334).
However, it should be noted, a systematic targeted gene-set
analysis in that sample found significant overrepresentation of
genes related to axon guidance but not for those involved in
neuronal migration [48].
The Price et al. study also identified, at the less stringent

p-value threshold (p~10–5), variants in or near genes implicated

in neurodevelopmental disorders, particularly autism spectrum
disorder (ASD) [53]. For example, ANKS1B, CNTN4, RBFOX1,
CSMD1, and ASTN2. The study of the self-reported dyslexia in
23andme observed top associated SNPs in ASD-related genes.
Although there is little evidence to support phenotypic
comorbidity between ASD and RD, both are neurodevelop-
mental disorders and ASD involves deficits in language and
communication skills [56, 57]. Further, there is some preliminary
evidence of shared genetic risk factors: rare and de novo
variants identified in ASD cases for genes that have been
independently associated with RD (PRTG, ROBO1, and
KIAA0319L) [58, 59], and altered neuronal migration has been
suggested as a etiological mechanism in each condition
[60–64]. While putative links between RD and DNM have
received much attention in prior literature, few investigations to
date have explored potential overlaps in neurobiological
foundations of RD and ASD.
Given GWAS-based observations of associated SNPs in genes

previously implicated in ASD and genes involved in NM/AG,
along with investigations of DNM in previous candidate gene
and postmortem studies, we wished to leverage this informa-
tion to improve power to identify significant variants. Most
existing GWAS samples are modest in size, with the exception
of [47, 48], and relatively few findings reach statistical
significance at the genome-wide level. To leverage power
within available samples, we used Hypothesis-Driven
(HD)–GWAS, which up-weights or prioritizes variants based
on previously established genetic or biological hypotheses
[65]. Statistical corrections are performed independently on
the up-weighted and nonup-weighted groups, reducing the
threshold for significance and increasing power. The HD-GWAS
was primarily conducted on the Toronto sample [53]. We also
wanted to examine the issues in the context of a larger dataset,
so secondarily we used the meta-analysis of the GenLang
Consortium [47]. A tertiary analysis was conducted using only
those GenLang samples that were selected based on reading
and/or language difficulties, to make it more comparable to the
Toronto samples.
For our HD-GWAS of word reading, we formulated two separate

hypotheses based on the results from previous GWAS (“conven-
tional”, hypothesis-free GWAS) [53] and the literature. Specifically,
we hypothesized that variants in (1) genes implicated in NM/AG and
(2) genes implicated in ASD, would contribute to word reading.

METHODS
Study populations and measures
To complete the HD-GWAS analyses, summary statistics from the Toronto
conventional GWAS [53] and the meta-analysis of the GenLang Consortium
were used [47]. The gene-set analyses made use of the raw genotypes of
the Toronto sample and the summary statistics of GenLang. For both
samples, quantitative measures of word reading were used as the
phenotype.

Toronto sample. The Toronto sample has previously been described and
is part of an ongoing genetic study of RD-selected families recruited at the
Hospital for Sick Children [53, 56, 66]. At the time of analysis, the sample
consisted of children identified with reading difficulties (n= 453) and both
their unaffected and affected siblings (n= 171). Children were of European
ancestry, as determined by PCA analysis. This choice aimed to reduce
variation and create a more homogeneous population; however, it does
not fully encompass the complex nature of allelic structure [67]. Children
were excluded if there was evidence of other neurodevelopmental
disorders, including ASD, apraxia, dyspraxia, central auditory processing
disorder, stuttering, and psychiatric disorders, as well as medical conditions
that would interfere with reading. Information on psychiatric and
neurodevelopmental disorders was obtained using a structured parent
interview [68] and a semi-structured teacher interview [69]. Children with
ADHD, mild anxiety disorders, and speech/language difficulties were
included.
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The Toronto sample was measured for word reading using the Wide
Range Achievement Test (WRAT) 3 [70]. The mean reading score was 88.4
[53]. Verbal assent and/or written consent was obtained from all children
and parents. Procedural approval was given by the Hospital for Sick
Children and University Health Network Research Ethics Boards.

The GenLang Consortium. The GenLang Consortium is a large interna-
tional effort to study genetic contributions to traits related to speech,
language, and reading (https://www.genlang.org). It does so through
meta-analyses of these traits in population-based samples, as well as
family-based and case-control cohorts [47]. For the purposes of the current
study, the Toronto sample was analyzed separately, because the overlap
between RD and neuronal migration/ASD was originally observed in this
sample and formed the basis of the hypotheses being tested in this work.
The GenLang meta-analysis dataset used in this study consisted of

17 samples (n= 26,588) with individuals of European ancestry, as determined
by PCA analysis (Table S1) [47]. Data quality control and filtering were
performed by each individual sample before the meta-analysis [47]. We refer
to this sample collectively as “The GenLang Cohort”.
In the GenLang Cohort, word reading was measured using a variety of

standardized tests (depending on the individual sample) [47]. These
phenotypic data were aligned across samples prior to the meta-analysis, as
described in [47]. Consent was obtained from all participants in the GenLang
Consortium and each individual sample’s institution-approved data use.

The GenLang selected subset. Five samples of the GenLang Cohort,
selected for reading or language difficulties, were also examined (n= 4152,
Table S1) as a subset. With exception of the SLIC cohort, all samples were
selected for reading difficulties and participants were between the ages of
7 to 18. We refer to this collectively as the “GenLang selected subset”. In
the family-based samples, phenotypic data was available both from
probands and their siblings, regardless of affection status; therefore, these
samples included a range of quantitative variation.

Data processing and GWAS of Toronto. Genotyping and quality control of
the Toronto sample were previously described [53]. Briefly, DNA from each
participant was genotyped on the OmniExpress platform and unobserved
variants were imputed using the Michigan imputation server [71]. Quality
control was conducted over numerous steps. Sex was checked using the
heterozygosity of markers on the X chromosome. Sibling relationships
were confirmed genetically and individuals with cryptic relationship were
removed. In addition, variants with low imputation quality (R2 < 0.3),
variants out of Hardy-Weinberg equilibrium (p < 0.0001), and variants with
minor allele frequencies less than 5% were removed as well as samples
with >2% missing genotypes and call rates <98%. After this filtering, 5.3
million SNPs were included in the analysis.
Because the Toronto sample included sibling pairs, the GWAS analysis

was conducted using a linear mixed model in the R package ‘nlme’ to
include a random effects term for family relationship [53]. Covariates for
population structure (principal components) were also included as fixed
effects. Only self-reported European Caucasian individuals were included
in the analysis; verified by genotype. Principal components were generated
in the program KING [72] and a Tracy-Widom statistic (EIGENSOFT
Program) was used to determine significance [53].

Meta-analysis of the GenLang Cohort. Genotyping and quality control of
the GenLang Cohort samples were previously described [47]. Individual
cohort association analyses were performed with different tools, including
SNPTEST [73], GEMMA [74], and PLINK [75] and included covariates for
population structure (principal components) and family relationship.
A meta-analysis was performed on the samples using the program

METAL [76], again using only individuals of European ancestry as
determined by principal components. Effect size estimates were weighted
with the inverse of the standard errors and genomic control on [47]. The
GenLang selected subset underwent the same meta-analysis process.
Summary statistics for the GenLang Cohorts were provided for use in this
study after review and approval of the project by the coordinating board of
the GenLang Consortium.
The Manhattan and quantile-quantile plots were generated using FUMA

[77]. The regional association plot was examined in LocusFocus (https://
locusfocus.research.sickkids.ca/) [78].
For both the GenLang Cohort and GenLang selected sample, only SNPs

with a MAF ≥ 5%, and variants present in ≥50% of the total sample
were used.

HD-GWAS. HD-GWAS serves as a powerful approach to GWAS by
incorporating genetic or biological hypotheses based on the previously
conducted research. This technique was developed and then tested by
[65, 79–81]. Variants are divided into two strata: a stratum where it is
hypothesized that variants are associated with the trait and a stratum
where they are not. An estimated false discovery rate (FDR) is then
calculated separately on each stratum. This prioritization leads to a less
stringent type 1 error cut-off and increases the power to detect
associated SNPs.
Although the Toronto sample did not originally meet SNP-based

significance in the conventional GWAS, it did produce SNP level p-values
of 10–7 and significant evidence by gene-based analysis. Thus, FDR
correction was appropriate to increase power. The GenLang sample was a
powerful sample with significant findings by conventional GWAS.
HD-GWAS was run using the stratified False Discovery Rate (sFDR)

framework and program (http://www.utstat.toronto.edu/sun/Software/SFDR/
index.html) [65, 79, 80]. As input, the program requires a SNP identifier, the p-
value, and the weighting status (1- not up-weighted (not prioritized), 2- up-
weighted (prioritized)). R (https://www.r-project.org/) and the command
“merge ()” were then used to incorporate up-weighting information with
summary statistics. Variants that were not in the up-weighted group formed
the control stratum. The sFDR commands “-assoc” and “-SFDR” were used. The
output included the FDR q-value and a sFDR q-value.
To test the first hypothesis, we up-weighted variants in genes implicated in

NM/AG as well as growth cone formation. The gene list was made with AmiGO
(http://amigo.geneontology.org), which uses the Gene Ontology (GO) database
to annotate genes. The following search terms were used GO:0001764 neuron
migration, GO:0007411 axon guidance, and GO:0030426 growth cone.
We broadened neuronal migration to include axon guidance and growth

cone formation because many axon guidance molecules are pleiotropic, with
diverse functions in multiple tissues and in the brain, including neuronal
migration in the developing brain [82, 83] and growth cones are at the tips of
the leading processes of migrating neurons and elongating axons [82, 83].
Genes in all three pathways have been implicated in disorders of neuronal
migration, including periventricular nodular heterotopia [84], a neuronal
migration disorder in which cortical development is compromised, leading to
epilepsy and RD [85]. A total of ~115,000 variants in 351 genes were tested
(Table S2). Within this gene list, we included the original RD-linked candidate
genes that have been implicated in neuronal migration (KIAA0319, DCDC2,
DYX1C1, and ROBO1).
To test the second hypothesis, we up-weighted variants in genes implicated

in ASD using the gene list from the Simons Foundation Autism Research
Initiative (SFARI) database (https://gene.sfari.org/database/human-gene/). More
than half of these genes have been implicated in ASD through rare de novo
mutations, or copy number variants (CNVs, syndromic or functional), but we
also included those identified via genome-wide association studies. All
categories were included, which at the time of the analysis consisted of 990
genes (Table S3) (~370,000 variants).

Gene-set analysis. The joint contribution of the genes annotated to each
hypothesis was tested using gene-set analysis in MAGMA [86]. For the NM/
AG and ASD hypotheses, the AMIGO and the SFARI gene lists, respectively,
were used.
Gene-set analysis involves three steps, which were completed in MAGMA

(https://ctg.cncr.nl/software/magma). For the first step genes were anno-
tated to SNPs. Input for this step was raw genotype data for the Toronto
sample and the reference data of the 1000 genomes project for the
GenLang [87]. Second, individual gene analysis was completed to
determine the association between each gene and the phenotype. For
both samples, this step was performed using linear regression to compute a
p-value for each gene. The input data were as follows. For the Toronto
sample, the predictor variables were gene annotations from the previous
step and principal components for population structure. The outcome
variable was the word reading phenotype. For the GenLang datasets, the
predictor variables were the gene annotations from the previous step and
the outcome was the summary statistic p-values. Lastly, gene annotations
were aggregated to their set and tested as a unit to see if they affected the
trait. MAGMA took into consideration gene size, gene density, and allele
count. The null hypothesis was that the genes tested as a group showed no
greater association than a random set of genes.

Threshold for significance. The threshold for significance for the HD-GWAS
and gene-set analyses was set at 2.5 × 10–2 (critical threshold 0.05/2
hypotheses). The Toronto sample formed the basis of our hypotheses and
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was corrected separately from the GenLang meta-analyses. The Toronto
sample had no participant overlap with the GenLang Cohort.

RESULTS
Conventional GWAS
The conventional GWAS for the Toronto and the GenLang Cohort
have previously been published [47, 53]. The HD-GWAS analyses
utilized the GenLang Cohort without the Toronto sample because
the potential overlap between reading and neuronal migration/
ASD was originally observed in that sample [53].
The GWAS of the GenLang selected subset, including only those

GenLang samples that were recruited via probands with RD or
language disorder, is a novel analysis that has not previously been
described. The characteristics of cohorts in the selected subset are
available within Supplemental Table 1 of Eising et al (2022). The
Manhattan plot and quantile-quantile (Q-Q) plot for the selected
subset are shown in Figs. S1–2. The p values depart from the
expected line in the Q-Q plot at a p value of 10−8. The λ statistic
was a value of 1.02.
For the conventional GWAS of the GenLang selected subset

(no hypothesis tested), the top associated locus was on
chromosome 21q21.1 in the intergenic region between genes
BTG3 and C21orf91. The most significant SNP was rs4818369
(Table 1, p= 2.37 × 10–10, threshold p ≤ 5 × 10–8; results at
p < 10–6 shown in Table S4). The regional association plot is
depicted in Fig. S3. Rs4818369 was not found to correlate with
altered splicing or eQTLs. SNPs (p~10–7) in linkage disequili-
brium (LD) (r2 > 0.3) with rs4818369 are eQTLs for the genes
BTG3 and C21orf91 (GTEx v8, Table S5). For the conventional
GWAS of the GenLang Cohort, this SNP did not show genome-
wide significant association (p= 3.00 × 10–3).

HD-GWAS for the Toronto sample
For the HD-GWAS of the Toronto sample, no SNPs passed the
threshold for significance when up-weighted based on the two
hypotheses (threshold sFDR q ≤ 2.5 × 10–2; top 10 results in Tables
S6–S7). However, when we tested the joint contribution of all
genes in each of the individual hypotheses, we found the ASD-
related gene-set was statistically significant (Table 2,
p= 1.45 × 10–2, threshold p ≤ 2.5 × 10–2).

HD-GWAS for the GenLang Cohort
For the HD-GWAS of the GenLang Cohort, two loci on chromosome
1p31.3 and 20q13.33 in DOCK7 and CDH4, respectively, passed the
threshold for significance for the NM/AG hypothesis. The most
significant SNP was rs1168041 for chromosome 1 and rs6089259
for chromosome 20 (Table 3, rs1168041 p= 6.61 × 10–7, rs6089259
p= 7.03 × 10–6, both sFDR q= 1.02 × 10–2, threshold sFDR

q ≤ 2.5 × 10–2; results with q < 0.05 in Tables S8, S10. These SNPs
were the top ranked SNPs by sFDR and in the prioritized group.
Rs1168041 is an eQTL and splice quantitative trait locus (sQTL) for
DOCK7, as are SNPs in LD (r2 > .03) with this marker (GTEx v8, Table
S9. This SNP is in LD (r2= .33) with the top SNP (rs11208009) in the
original GenLang meta-analysis (22 samples, including the Toronto
sample) located ~45 kb from DOCK7 [47]. Rs11208009 is also an
eQTL and sQTL for DOCK7 (Eising et al. (2022) Supplementary) [47].
Rs6089259, intronic to CDH4, is not correlated with altered splicing
or eQTLs according to available data.
For the gene-set analysis of the GenLang, no gene-sets passed

the threshold for significance (threshold p ≤ 2.5 × 10–2, Table S11).

HD-GWAS for the GenLang selected subset
For the HD-GWAS of the GenLang selected subset, the same locus
and SNP (21q21.1, rs4818369) as the conventional GWAS passed
the threshold for significance for both hypotheses (Table 4,
p= 2.37 × 10–10, sFDR q < 9.00 × 10–4, 8.00 × 10−4, threshold sFDR
q ≤ 2.5 × 10–2; results with q < 0.05 Tables S12–S13). This SNP was
the top-ranked SNP by sFDR and not in the prioritized group,
reflecting the robustness of the HD-GWAS [79]. Within the HD-
GWAS and conventional GWAS of the GenLang selected subset, 14
and 18 SNPs, respectively, were previously identified with p < 10–6

in a prior GWAS analysis of word reading by Gialluisi et al. [50]
(Tables S14–S15). The GenLang selected subset includes four
cohorts which were included in the earlier Gialluisi et al. study [50],
although at the time of that study the aforementioned cohorts
were smaller in sample size than presently. The GenLang selected
subset included one extra cohort (SLIC). The GenLang selected
subset comprised 4152 individuals while Gialluisi included 3468
individuals.
For the gene-set analysis of the GenLang selected subset, no

gene-sets passed the threshold for significance (threshold
p ≤ 2.5 × 10–2, Table S16).

DISCUSSION
Until recently, GWAS investigations of reading skills have
identified few associated loci that passed the threshold for
genome-wide significance. However, with the organization of
large-scale collaborations, such loci are beginning to be found
[47–50]. The number and size of cohorts characterized for reading-
related traits has been a limiting factor. Therefore, methods that
improve power to capitalize on existing samples are necessary to
move the field forward in the short term. Overlap with top loci and
genes known to be related to NM/AG and ASD susceptibility were
observed in previous GWAS findings [47, 48, 53]. To test these
observations, we used HD-GWAS, prioritizing variants in genes
implicated in NM/AG or ASD susceptibility. We also tested the joint
contribution of the genes and therefore the prioritization
hypotheses themselves.
For the hypothesis testing the relationship to ASD, we did not

identify significant SNPs by HD-GWAS. However, gene-set analysis
determined that the hypothesis itself tested as the joint
contribution of ASD-related genes was significant in the Toronto
sample. There was no relationship in the GenLang meta-analysis.
Previous GWAS studies that examined the relationship between
ASD and RD [47, 48, 53] did not find genetic correlations using
polygenic risk scores or LD Score Regression (LDSC). This may be

Table 1. Conventional GWAS GenLang selected subset only.

SNP Position A1 Freq Gene Effect SE P N

rs4818369 21:19055075 T 0.60 BTG3-C21orf91 −0.15 2.43 × 10–2 2.37 × 10–10 4152

SNP Single Nucleotide Polymorphism, Position chromosome: base pair (hg19), A1 Allele 1, Freq Allele Frequency, SE Standard Error, P P value, N Sample Size.
Only genome-wide significant results shown (significance threshold p= 5 × 10−8).

Table 2. Gene-set results for Toronto.

Hypothesis Ngenes Beta SE P

Neuronal Migration/
Axon Guidance

327 0.066 0.048 0.08584

SFARI ASD 890 0.066 0.030 0.01448

Ngenes number of genes, SE Standard Error, P P value.
Significance threshold p ≤ 2.5 × 10−2.
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because the GWAS for ASD to date are relatively small or because
the cohorts were composed of diverse neurodevelopmental
phenotypes as previously suggested [48]. Further, the PRS/LDSC
analyses depend on summary statistics from GWAS analysis, which
use only common variants. The SFARI dataset contains genes
implicated in ASD by rare variants or CNV analyses, as well as
genes identified from association studies of common variation.
Thus, ASD-reading trait overlap may not be detectable via PRS
methods because rare variants were not imputed in the GWAS
analyses. Another possibility is that there may indeed be shared
genes involved, but that the specific risk alleles are different for
ASD and reading and are not in LD. HD-GWAS prioritizes genes
irrespective of the contributing genetic variants and allows us to
more formally quantify word reading–ASD associations in the
Toronto sample, which was previously an observation [53].
For the Toronto sample, we excluded children with known or

suspected ASD, or with a first-degree relative with ASD, or other
global/intellectual disabilities. Overlap between reading- and ASD-
associated genes likely stemmed from shared genetic risk for
neurodevelopmental disorders, particularly those contributing to
language-related difficulties, as opposed to global delays [56, 57].
For the NM/AG hypothesis, HD-GWAS using the GenLang

Consortium data identified two associated loci with the top SNPs
located in DOCK7 and CDH4. DOCK7, Dedicator of Cytokinesis 7, is
involved in axon formation and neuronal polarization [55]. The top
marker, rs1168041, is an eQTL and sQTL for DOCK7. SNPs distal to
DOCK7 were previously identified as significantly associated with
word reading in the GenLang Consortium meta-analysis with the
top SNPs also eQTLs and sQTLs for DOCK7 [47]. CDH4, Cadherin 4,
encodes a cell-cell adhesion glycoprotein thought to play a role in
cortical development and neuronal outgrowth [88]. CDH4 has not
been implicated in RD traits in previous studies.
Our HD-GWAS analyses using the selected GenLang Consortium

data identified a significant locus associated with word reading for
both hypotheses, indicating that the result is robust and found
even though this locus is not within the upweighted SNP sets. The

top associated markers (rs4818369) are located between the genes
BTG3 and C21orf91, and LD SNPs are eQTLs for both genes which
are credible candidates for involvement in RD. BTG3, BTG Anti-
Proliferation Factor 3, is implicated in neurogenesis [89, 90], and
C21orf91, also known as EURL (Early Undifferentiated Retina and
Lens), is implicated in oligodendroglia differentiation, influencing
the cell’s capacity to mature and to myelinate axons [91].
The results of our HD-GWAS and gene-set analyses, although

statistically significant in the separate samples, were not replicated
across the Toronto and GenLang datasets. Thus far, few associated
loci have been found to overlap between samples of self-reported
dyslexia, quantitative measures of reading in population-based,
and RD-selected cohorts [50, 53]. Nonetheless, these same studies
yield evidence of considerable genetic overlap between quanti-
tative measures of reading and self-report dyslexia, as shown by
genetic correlation analyses using the GWAS data (rg=−0.71).
The lack of overlap for individual loci may simply be a function of
power, which could change with larger sample sizes, but a role for
differences in ascertainment cannot be ruled out. Clinically
ascertained GWAS samples may be enriched for participants with
comorbid disorders as individuals with multiple conditions are
more likely to come to clinical attention (Berkson’s Bias) [92],
increasing the identification of genes related to those disorders.
Alternatively, clinical studies may screen for, and exclude
participants with, comorbid or medical conditions or environ-
mental factors that would interfere with reading acquisition. These
exclusions could alter the composition of the sample compared to
population-based samples and possibly influence gene findings.
In summary, through an HD-GWAS framework, we identified

significant associations with reading skills. We also found that
genes related to ASD risk contribute to RD in the Toronto sample.
Our findings support two core features of the HD-GWAS frame-
work. First, this framework is robust to stratifying misspecification
of up-weighted variants (i.e., less than ideal hypotheses [65]). We
demonstrated this feature when using HD-GWAS we identified the
same chromosomal 21 SNPs from conventional GWAS, even

Table 3. HD-GWAS results for the GenLang Cohort q < 0.05.

Hypothesis SNP Position Gene P GWAS qSFDR

Neuronal Migration/Axon Guidance rs1168041 1:62960250 DOCK7 6.61 × 10–7 1.02 × 10–2

rs6089259 20:60246390 CDH4 7.03 × 10–6 1.02 × 10–2

rs17158413 15:83235408 CPEB1 4.42 × 10–5 2.92 × 10–2

Total SNPs: 5,552,103.
Upweighted SNPs: Neuronal migration 115,448.
SNP Single Nucleotide Polymorphism, Position chromosome: base pair (hg19), P GWAS P-value in GWAS, qSFDR q-value from SFDR program.
Additional information including LD SNPs or SNPs in same gene region, rank and up-weighted status in the supplementary material.
Threshold for significance q ≤ 2.5 × 10−2.

Table 4. HD-GWAS results for GenLang selected subset only q < 0.05.

Hypothesis SNP Position Gene P GWAS qSFDR

Neuronal Migration/Axon Guidance rs4818369 21:19055075 BTG3-C21orf91** 2.37 × 10–10 9.00 × 10–4

rs6090818 20.:46883131 LINC00494** 1.82 × 10–7 3.67 × 10–2

rs6865160 5:31766737 PDZD2 2.82 × 10–7 4.10 × 10–2

SFARI ASD rs4818369 21:19055075 BTG3-C21orf91** 2.37 × 10–10 8.00 × 10–4

rs6090818 20.:46883131 LINC00494** 1.82 × 10–7 3.50 × 10–2

rs6865160 5:31766737 PDZD2 2.82 × 10–7 3.92 × 10–2

Total SNPs: ~5,610,600.
Upweighted SNPs: Neuronal migration, 116,829; SFARI ASD 371,158.
SNP Single Nucleotide Polymorphism, Position chromosome: base pair (hg19), P GWAS P-value in GWAS, qSFDR q-value from SFDR program.
Additional information including LD SNPs or SNPs in same gene region, rank and up-weighted status in the supplementary material.
Significance threshold q ≤ 2.5 × 10−2.
**Intergenic and associated with word reading in Gialluisi et al., (6.79 × 10−6/3.14 × 10−7).
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though they were not in the up-weighted group for the GenLang
selected subset. Second, this framework increases power to
identify genes within hypothesized pathways/mechanisms com-
pared to unstratified approaches. We illustrated this feature when
we found that the ASD-related gene-set contributed to reading
and identified loci upweighted in the NM/AG hypothesis. Future
studies involving larger GWAS samples ascertained through
reading and language disorders may help to elucidate shared
genetic mechanisms between RD and ASD.

DATA AVAILABILITY
Summary statistics for the Toronto sample and the GenLang sample used in this
study are available upon application to the GenLang Consortium (http://
www.genlang.org) and review of the proposal. To download summary statistics for
the entire GenLang (not the sample specific to this study), use http://
www.genlang.org or the public GWAS catalogue.
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