85 research outputs found

    Stereodivergent Access to Trisubstituted Alkenylboronate Esters through Alkene Isomerization

    Get PDF
    We report an efficient method for the preparation of synthetically valuable trisubstituted alkenylboronate esters through alkene isomerization of their readily available 1,1-disubstituted regioisomeric counterparts. Either stereoisomer of the target alkenylboronate motif can be obtained at will from the same starting material by employing different isomerization catalysts

    Enantioselective Construction of Acyclic Quaternary Carbon Stereocenters: Palladium-Catalyzed Decarboxylative Allylic Alkylation of Fully-Substituted Amide Enolates

    Get PDF
    We report a divergent and modular protocol for the preparation of acyclic molecular frameworks containing newly created quaternary carbon stereocenters. Central to this approach is a sequence composed of a (1) regioselective and -retentive preparation of allyloxycarbonyl-trapped fully substituted stereodefined amide enolates and of a (2) enantioselective palladium-catalyzed decarboxylative allylic alkylation reaction using a novel bisphosphine ligand

    Revealed versus concealed criteria for placental insufficiency in an unselected obstetric population in late pregnancy (RATIO37): randomised controlled trial study protocol.

    Full text link
    INTRODUCTION: Fetal growth restriction (FGR) affects 5%-10% of all pregnancies, contributing to 30%-50% of stillbirths. Unfortunately, growth restriction often is not detected antenatally. The last weeks of pregnancy are critical for preventing stillbirth among babies with FGR because there is a pronounced increase in stillbirths among growth-restricted fetuses after 37 weeks of pregnancy. Here we present a protocol (V.1, 23 May 2016) for the RATIO37 trial, which evaluates an integrated strategy for accurately selecting at-risk fetuses for delivery at term. The protocol is based on the combination of fetal biometry and cerebroplacental ratio (CPR). The primary objective is to reduce stillbirth rates. The secondary aims are to detect low birth weights and adverse perinatal outcomes. METHODS AND ANALYSIS: The study is designed as multicentre (Spain, Chile, Mexico,Czech Republic and Israel), open-label, randomised trial with parallel groups. Singleton pregnancies will be invited to participate after routine second-trimester ultrasound scan (19+0-22+6 weeks of gestation), and participants will be randomly allocated to receive revealed or concealed CPR evaluation. Then, a routine ultrasound and Doppler scan will be performed at 36+0-37+6 weeks. Sociodemographic and clinical data will be collected at enrolment. Ultrasound and Doppler variables will be recorded at 36+0-37+6 weeks of pregnancy. Perinatal outcomes will be recorded after delivery. Univariate (with estimated effect size and its 95% CI) and multivariate (mixed-effects logistic regression) comparisons between groups will be performed. ETHICS AND DISSEMINATION: The study will be conducted in accordance with the principles of Good Clinical Practice. This study was accepted by the Clinical Research Ethics Committee of Hospital Clinic Barcelona on 23May 2016. Subsequent approval by individual ethical committees and competent authorities was granted. The study results will be published in peer-reviewed journals and disseminated at international conferences

    Oxidation of bis-sulfinyl carbanions as the pivot of ionic/radical tandem reactions

    Get PDF
    International audience[1,4]-additions of various nucleophiles such as lithiated carbamates, alkoxides or ester enolates onto enantiopure alkylidene bis-sulfoxides proceed with high diastereoselectivity. The oxidation of the resulting carbanions with iron(III) salts induces the radical cyclizations onto alkenes with a high diastereoselectivity leading to enantiopure carbo- or heterocycles. Moreover, allylic radicals have been generated by deprotonation or [1,6]-conjugate addition from alkylidene bis-sulfoxides followed by oxidation

    Super-heavy fermion material as metallic refrigerant for adiabatic demagnetization cooling

    Get PDF
    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, as the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3^3He gas are widely used for cooling below 1 Kelvin. However, usage of the gas is being increasingly difficult due to the current world-wide shortage. Therefore, it is important to consider alternative methods of refrigeration. Here, we show that a new type of refrigerant, super-heavy electron metal, YbCo2_2Zn20_{20}, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas. A number of advantages includes much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1−x_{1-x}Scx_xCo2_2Zn20_{20} by partial Sc substitution with x∌x\sim0.19. The substitution induces chemical pressure which drives the materials close to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures enabling final temperatures well below 100 mK. Such performance has up to now been restricted to insulators. Since nearly a century the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for the cryogen-free refrigeration

    Multidisciplinary management of acromegaly: A consensus.

    Get PDF
    The 13th Acromegaly Consensus Conference was held in November 2019 in Fort Lauderdale, Florida, and comprised acromegaly experts including endocrinologists and neurosurgeons who considered optimal approaches for multidisciplinary acromegaly management. Focused discussions reviewed techniques, results, and side effects of surgery, radiotherapy, and medical therapy, and how advances in technology and novel techniques have changed the way these modalities are used alone or in combination. Effects of treatment on patient outcomes were considered, along with strategies for optimizing and personalizing therapeutic approaches. Expert consensus recommendations emphasize how best to implement available treatment options as part of a multidisciplinary approach at Pituitary Tumor Centers of Excellence

    The scientific payload of the Ultraviolet Transient Astronomy Satellite (ULTRASAT)

    Full text link
    The Ultraviolet Transient Astronomy Satellite (ULTRASAT) is a space-borne near UV telescope with an unprecedented large field of view (200 sq. deg.). The mission, led by the Weizmann Institute of Science and the Israel Space Agency in collaboration with DESY (Helmholtz association, Germany) and NASA (USA), is fully funded and expected to be launched to a geostationary transfer orbit in Q2/3 of 2025. With a grasp 300 times larger than GALEX, the most sensitive UV satellite to date, ULTRASAT will revolutionize our understanding of the hot transient universe, as well as of flaring galactic sources. We describe the mission payload, the optical design and the choice of materials allowing us to achieve a point spread function of ~10arcsec across the FoV, and the detector assembly. We detail the mitigation techniques implemented to suppress out-of-band flux and reduce stray light, detector properties including measured quantum efficiency of scout (prototype) detectors, and expected performance (limiting magnitude) for various objects.Comment: Presented in the SPIE Astronomical Telescopes + Instrumentation 202
    • 

    corecore