2,080 research outputs found

    A local search method for graph clustering heuristics based on partitional distribution learning

    Get PDF
    The community structure of complex networks reveals hidden relationships in the organization of their constituent nodes. Indeed, many practical problems stemming from different fields of knowledge such as Biology, Sociology, Chemistry and Computer Science can be modeled as a graph. Therefore, graph analysis and community detection have become a key component for understanding the inherent relational characteristics underlying different systems and processes. In this regard, distinct unsupervised quality metrics such as conductance, coverage and modularity, have upsurged in order to evaluate the clustering arrangements based on structural and topological characteristics of the cluster space. In this regard graph clustering can be formulated as an optimization problem based on the maximization of one of such metrics, for which a number of nature-inspired heuristic solvers has been proposed in the literature. This paper elaborates on a novel local search method that allows boosting the convergence of such heuristics by estimating and sampling the cluster arrangement distribution from the set of intermediate produced solutions of the algorithm at hand. Simulation results reveal a generalized better performance compared towards other community detection algorithms in synthetic and real datasets

    Novel Light Coupling Systems Devised Using a Harmony Search Algorithm Approach

    Get PDF
    We report a critical assessment of the use of an Inverse Design (ID) approach steamed by an improved Harmony Search (IHS) algorithm for enhancing light coupling to densely integrated photonic integratic circuits (PICs) using novel grating structures. Grating couplers, performing as a very attractive vertical coupling scheme for standard silicon nano waveguides are nowadays a custom component in almost every PIC. Nevertheless, their efficiency can be highly enhanced by using our ID methodology that can deal simultaneously with many physical and geometrical parameters. Moreover, this method paves the way for designing more sophisticated non-uniform gratings, which not only match the coupling efficiency of conventional periodic corrugated waveguides, but also allow to devise more complex components such as wavelength or polarization splitters, just to cite some

    Performances of Anode-resistive Micromegas for HL-LHC

    Full text link
    Micromegas technology is a promising candidate to replace Atlas forward muon chambers -tracking and trigger- for future HL-LHC upgrade of the experiment. The increase on background and pile-up event probability requires detector performances which are currently under studies in intensive RD activities. We studied performances of four different resistive Micromegas detectors with different read-out strip pitches. These chambers were tested using \sim120 GeV momentum pions, at H6 CERN-SPS beam line in autumn 2010. For a strip pitch 500 micrometers we measure a resolution of \sim90 micrometers and a efficiency of ~98%. The track angle effect on the efficiency was also studied. Our results show that resistive techniques induce no degradation on the efficiency or resolution, with respect to the standard Micromegas. In some configuration the resistive coating is able to reduce the discharge currents at least by a factor of 100.Micromegas technology is a promising candidate to replace Atlas forward muon chambers -tracking and trigger- for future HL-LHC upgrade of the experiment. The increase on background and pile-up event probability requires detector performances which are currently under studies in intensive RD activities. We studied performances of four different resistive Micromegas detectors with different read-out strip pitches. These chambers were tested using \sim120 GeV momentum pions, at H6 CERN-SPS beam line in autumn 2010. For a strip pitch 500 micrometers we measure a resolution of \sim90 micrometers and a efficiency of \sim98%. The track angle effect on the efficiency was also studied. Our results show that resistive techniques induce no degradation on the efficiency or resolution, with respect to the standard Micromegas. In some configuration the resistive coating is able to reduce the discharge currents at least by a factor of 100.Comment: "Presented at the 2011 Hadron Collider Physics symposium (HCP-2011), Paris, France, November 14-18 2011, 3 pages, 6 figures.

    Multi-objective heuristics applied to robot task planning for inspection plants

    Get PDF
    Robotics are generally subject to stringent operational conditions that impose a high degree of criticality on the allocation of resources and the schedule of operations in mission planning. In this regard the so-called cost of a mission must be considered as an additional criterion when designing optimal task schedules within the mission at hand. Such a cost can be conceived as the impact of the mission on the robotic resources themselves, which range from the consumption of battery to other negative effects such as mechanic erosion. This manuscript focuses on this issue by presenting experimental results obtained over realistic scenarios of two heuristic solvers (MOHS and NSGA-II) aimed at efficiently scheduling tasks in robotic swarms that collaborate together to accomplish a mission. The heuristic techniques resort to a Random-Keys encoding strategy to represent the allocation of robots to tasks whereas the relative execution order of such tasks within the schedule of certain robots is computed based on the Traveling Salesman Problem (TSP). Experimental results in three different deployment scenarios reveal the goodness of the proposed technique based on the Multi-objective Harmony Search algorithm (MOHS) in terms of Hypervolume (HV) and Coverage Rate (CR) performance indicators

    Social Cognitive Theory and Health Care: Analysis and Evaluation

    Get PDF
    Social Cognitive Theory explains how different personal, environmental and cognitive factors influence human behavior and it has been an important source of knowledge in the social and health sciences. It has been employed in research and practice in nursing, the science of caring. However, no critical analysis has been conducted to show the impact of Social Cognitive Theory in nursing. This article aims to conduct an analysis and evaluation of Social Cognitive Theory using the Fawcett and DeSanto-Madeya methodological framework and a systematic search of the literature. Social Cognitive Theory showed that even though is a non-disciplinary theory of health sciences, the clarity and simplicity of its content facilitates its use in understanding and addressing different phenomena of caring, the creation of middle-range theories and in professional education. The contribution of Social Cognitive Theory in nursing science has focused mainly on two aspects: firstly, on improving disciplinary knowledge with the practical context of health caring by understanding human behavior and its integration in interventions for the promotion, prevention and treatment of health, and secondly, on nursing professionals’ education, highlighting the relevance of the interdisciplinary nature of knowledge

    A Novel Grouping Harmony Search Algorithm for Clustering Problems

    Get PDF
    The problem of partitioning a data set into disjoint groups or clusters of related items plays a key role in data analytics, in particular when the information retrieval becomes crucial for further data analysis. In this context, clustering approaches aim at obtaining a good parti- tion of the data based on multiple criteria. One of the most challenging aspects of clustering techniques is the inference of the optimal number of clusters. In this regard, a number of clustering methods from the literature assume that the number of clusters is known a priori and sub- sequently assign instances to clusters based on distance, density or any other criterion. This paper proposes to override any prior assumption on the number of clusters or groups in the data at hand by hybridizing the grouping encoding strategy and the Harmony Search (HS) algorithm. The resulting hybrid approach optimally infers the number of clusters by means of the tailored design of the HS operators, which estimates this important structural clustering parameter as an implicit byproduct of the instance-to-cluster mapping performed by the algorithm. Apart from inferring the optimal number of clusters, simulation results ver- ify that the proposed scheme achieves a better performance than other na ̈ıve clustering techniques in synthetic scenarios and widely known data repositories

    Work and energy in rotating systems

    Full text link
    Literature analyzes the way in which Newton's second law can be used when non-inertial rotating systems are used. However, the treatment of the work and energy theorem in rotating systems is not considered in textbooks. In this paper, we show that the work and energy theorem can still be applied to a closed system of particles in a rotating system, as long as the work of fictitious forces is properly included in the formalism. The coriolis force does not contribute to the work coming from fictitious forces. It worths remarking that real forces that do not do work in an inertial reference frame can do work in the rotating reference frame and viceversa. The combined effects of acceleration of the origin and rotation of the non-inertial system are also studied.Comment: 6 pages, 3 figures, LaTeX2

    Overview of processing techniques for surface electromyography signals

    Full text link
    Surface electromyography (sEMG) is a technology to assess muscle activation, which is an important component in applications related to diagnosis, treatment, progression assessment, and rehabilitation of specific individuals' conditions. Recently, sEMG potential has been shown, since it can be used in a non-invasive manner; nevertheless, it requires careful signal analysis to support health professionals reliably. This paper briefly described the basic concepts involved in the sEMG, such as the physiology of the muscles, the data acquisition, the signal processing techniques, and classification methods that may be used to identify disorders or signs of abnormalities according to muscular patterns. Specifically, classification methods encompass digital signal processing techniques and machine learning with high potential in the field. We hope that this work serves as an introduction to researchers interested in this field.Comment: 11 pages, 7 figure

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured
    corecore