25 research outputs found

    BeppoSAX observations of 3C 273

    Get PDF
    We present preliminary results of BeppoSAX AO1 observations of 3C 273 performed in January 1997. We also present a close comparison with data obtained during the satellite SVP, in July 1996. On average, the AO1 flux is about a factor 2 higher than the flux detected during the SVP, and roughly on the middle of the historical X-ray flux range. Power law fits with galactic absorption to all observations yield spectral indices in the range 1.53-1.6, with the spectrum extending from 0.2 to at least up to 200 keV without any significant slope change. The broad band spectrum appears basically featureless, marking a clear difference from the SVP data, where an absorption feature at low energy and a fluorescence iron emission line are present. The lack of cold/warm matter signatures in our data may indicate that, at this "high" level of luminosity, the featureless continuum produced in a relativistic jet overwhelms any thermal and/or reprocessing component, while the two components were at least comparable during the "low" state of July 1996.Comment: 1+4 pages, 3 ps inlined figures, espcrc2.sty. Proc. of the Conf. "The Active X-Ray Sky: Results from BeppoSAX and Rossi-XTE", Rome 21-24 October 199

    A European aerosol phenomenology - 7 : High-time resolution chemical characteristics of submicron particulate matter across Europe

    Get PDF
    Similarities and differences in the submicron atmospheric aerosol chemical composition are analyzed from a unique set of measurements performed at 21 sites across Europe for at least one year. These sites are located between 35 and 62 degrees N and 10 degrees W - 26 degrees E, and represent various types of settings (remote, coastal, rural, industrial, urban). Measurements were all carried out on-line with a 30-min time resolution using mass spectroscopy based instruments known as Aerosol Chemical Speciation Monitors (ACSM) and Aerosol Mass Spectrometers (AMS) and following common measurement guidelines. Data regarding organics, sulfate, nitrate and ammonium concentrations, as well as the sum of them called non-refractory submicron aerosol mass concentration ([NR-PM1]) are discussed. NR-PM1 concentrations generally increase from remote to urban sites. They are mostly larger in the mid-latitude band than in southern and northern Europe. On average, organics account for the major part (36-64%) of NR-PM1 followed by sulfate (12-44%) and nitrate (6-35%). The annual mean chemical composition of NR-PM1 at rural (or regional background) sites and urban background sites are very similar. Considering rural and regional background sites only, nitrate contribution is higher and sulfate contribution is lower in midlatitude Europe compared to northern and southern Europe. Large seasonal variations in concentrations (mu g/m(3)) of one or more components of NR-PM1 can be observed at all sites, as well as in the chemical composition of NR-PM1 (%) at most sites. Significant diel cycles in the contribution to [NR-PM1] of organics, sulfate, and nitrate can be observed at a majority of sites both in winter and summer. Early morning minima in organics in concomitance with maxima in nitrate are common features at regional and urban background sites. Daily variations are much smaller at a number of coastal and rural sites. Looking at NR-PM1 chemical composition as a function of NR-PM1 mass concentration reveals that although organics account for the major fraction of NR-PM1 at all concentration levels at most sites, nitrate contribution generally increases with NR-PM1 mass concentration and predominates when NR-PM1 mass concentrations exceed 40 mu g/m(3) at half of the sites.Peer reviewe

    Artificial intelligence of imaging and clinical neurological data for predictive, preventive and personalized (P3) medicine for Parkinson Disease: the NeuroArtP3 protocol for a multi-center research study

    Get PDF
    Background The burden of Parkinson Disease (PD) represents a key public health issue and it is essential to develop innovative and cost-effective approaches to promote sustainable diagnostic and therapeutic interventions. In this perspective the adoption of a P3 (predictive, preventive and personalized) medicine approach seems to be pivotal. The NeuroArtP3 (NET-2018-12366666) is a four-year multi-site project co-funded by the Italian Ministry of Health, bringing together clinical and computational centers operating in the field of neurology, including PD. Objective The core objectives of the project are: i) to harmonize the collection of data across the participating centers, ii) to structure standardized disease-specific datasets and iii) to advance knowledge on disease’s trajectories through machine learning analysis. Methods The 4-years study combines two consecutive research components: i) a multi-center retrospective observational phase; ii) a multi-center prospective observational phase. The retrospective phase aims at collecting data of the patients admitted at the participating clinical centers. Whereas the prospective phase aims at collecting the same variables of the retrospective study in newly diagnosed patients who will be enrolled at the same centers. Results The participating clinical centers are the Provincial Health Services (APSS) of Trento (Italy) as the center responsible for the PD study and the IRCCS San Martino Hospital of Genoa (Italy) as the promoter center of the NeuroartP3 project. The computational centers responsible for data analysis are the Bruno Kessler Foundation of Trento (Italy) with TrentinoSalute4.0 –Competence Center for Digital Health of the Province of Trento (Italy) and the LISCOMPlab University of Genoa (Italy). Conclusions The work behind this observational study protocol shows how it is possible and viable to systematize data collection procedures in order to feed research and to advance the implementation of a P3 approach into the clinical practice through the use of AI models

    Antimicrobial potential of LEGUMES extracts against foodborne pathogens: A review

    Full text link
    [EN] Background: Alternative protein sources are being investigated in response to increasing consumer demand for innovative and healthy food products of vegetable origin to replace non-sustainable animal exploitation. The Leguminosae family includes a wide variety of plants and nutritious seeds, very rich in protein with a high biological value, carbohydrates, vitamins and minerals. Not only the seeds but also the aerial parts, pods, hulls and roots have proved to be natural sources of antioxidants, and anti-inflammatory and antimicrobial compounds. Scope and approach: The present article overviews the antimicrobial potential of the most popular legumes worldwide against foodborne pathogens. Key findings and conclusions: According to the literature reviewed, soybean and chickpea are the two consumed legumes with the highest antimicrobial activity. Long-chain soy peptides (IKAFKEATKVDKVVVLWTA) have a high antimicrobial potential against both Gram-positive and Gram-negative bacteria at a concentration level of 37.2 ¿M. Also, a wide spectrum of proteins and peptides in raw chickpeas and processed extracts have exerted antimicrobial activity against foodborne pathogens when applied in the range 8¿64 ¿g/ml. These results open a new research line with good prospects regarding the development of a new generation of natural preservative ingredients and extracts to be included in novel formulated products. However, critical aspects, such as (i) the stability of antimicrobial activity during the shelf-life of newly formulated food products, and (ii) the microbial inactivation kinetics generated in novel matrices, should be covered prior to exploitation of legumes as sources of novel technological ingredients with antimicrobial potential.The present research work has been supported by funds provided by the Spanish Ministry of Economy and Competitiveness (MINECO) as the HELICOFOOD project, with reference AGL2014-53875-R. The post-doctoral contract of M.C. Pina-Pérez as Juan de la Cierva-Incorporación granted by the MINECO is also acknowledged.Pina Pérez, MC.; Ferrús Pérez, MA. (2018). Antimicrobial potential of LEGUMES extracts against foodborne pathogens: A review. Trends in Food Science & Technology. 72:114-124. doi:10.1016/j.tifs.2017.12.007S1141247

    A European aerosol phenomenology - 7: High-time resolution chemical characteristics of submicron particulate matter across Europe

    Get PDF
    Similarities and differences in the submicron atmospheric aerosol chemical composition are analyzed from a unique set of measurements performed at 21 sites across Europe for at least one year. These sites are located between 35 and 62°N and 10° W – 26°E, and represent various types of settings (remote, coastal, rural, industrial, urban). Measurements were all carried out on-line with a 30-min time resolution using mass spectroscopy based instruments known as Aerosol Chemical Speciation Monitors (ACSM) and Aerosol Mass Spectrometers (AMS) and following common measurement guidelines. Data regarding organics, sulfate, nitrate and ammonium concentrations, as well as the sum of them called non-refractory submicron aerosol mass concentration ([NR-PM1]) are discussed. NR-PM1 concentrations generally increase from remote to urban sites. They are mostly larger in the mid-latitude band than in southern and northern Europe. On average, organics account for the major part (36–64%) of NR-PM1 followed by sulfate (12–44%) and nitrate (6–35%). The annual mean chemical composition of NR-PM1 at rural (or regional background) sites and urban background sites are very similar. Considering rural and regional background sites only, nitrate contribution is higher and sulfate contribution is lower in mid-latitude Europe compared to northern and southern Europe. Large seasonal variations in concentrations (μg/m³) of one or more components of NR-PM1 can be observed at all sites, as well as in the chemical composition of NR-PM1 (%) at most sites. Significant diel cycles in the contribution to [NR-PM1] of organics, sulfate, and nitrate can be observed at a majority of sites both in winter and summer. Early morning minima in organics in concomitance with maxima in nitrate are common features at regional and urban background sites. Daily variations are much smaller at a number of coastal and rural sites. Looking at NR-PM1 chemical composition as a function of NR-PM1 mass concentration reveals that although organics account for the major fraction of NR-PM1 at all concentration levels at most sites, nitrate contribution generally increases with NR-PM1 mass concentration and predominates when NR-PM1 mass concentrations exceed 40 μg/m³ at half of the sites

    THE ROLE OF MINERAL NUTRITION ON YIELDS AND FRUIT QUALITY IN GRAPEVINE, PEAR AND APPLE

    Get PDF
    ABSTRACT Fertilization of temperate fruit trees, such as grapevine ( Vitis spp.), apple ( Malus domestica), and pear ( Pyrus communis) is an important tool to achive maximum yield and fruit quality. Fertilizers are provided when soil fertility does not allow trees to express their genetic potential, and time and rate of application should be scheduled to promote fruit quality. Grapevine berries, must and wine quality are affected principally by N, that regulate the synthesis of some important compounds, such as anthocyanins, which are responsible for coloring of the must and the wine. Fermenation of the must may stop in grapes with low concentration of N because N is requested in high amount by yeasts. An N excess may increase the pulp to peel ratio, diluting the concentration of anthocyanins and promoting the migration of anthocyanins from berries to the growing plant organs; a decrease of grape juice soluble solid concentration is also expected because of an increase in vegetative growth. Potassium is also important for wine quality contributing to adequate berry maturation, concentration of sugars, synthesis of phenols and the regulation of pH and acidity. In apple and pear, Ca and K are important for fruit quality and storage. Potassium is the most important component of fruit, however, any excess should be avoided and an adequate K:Ca balance should be achieved. Adequate concentration of Ca in the fruit prevents pre- and post-harvest fruit disorders and, at the same time, increases tolerance to pathogens. Although N promotes adequate growth soil N availability should be monitored to avoid excessive N uptake that may decrease fruit skin color and storability

    The Physics of the B Factories

    Get PDF
    corecore