33 research outputs found

    Asymmetric Michael Addition of Dimethyl Malonate to 2 Cyclopenten-1-one Catalyzed by a Heterobimetallic Complex

    Get PDF
    A. Preparation of GaNa-(S)-BINOL((S)-2) Solution (0.05 M).2 A flame-dried 1L, three-necked round-bottomed flask with 24/40 joints and a 1.5" Teflon coated egg-shaped magnetic stir bar is brought into a nitrogen filled glovebox (Note 2). The flask is charged with gallium (III) chloride (5.0 g, 28.4 mmol, 1.0 equiv) (Notes 3 and 4). The flask is sealed with three rubber septa (one of which is fitted with an internal temperature probe) brought out of the glovebox, and put under positive pressure of nitrogen via a needle attached to a nitrogen line. Another flame-dried 1L, three-necked round-bottomed flask with 24/40 joints and a 1.5" Teflon coated egg-shaped magnetic stir bar is charged with (S)-(-)-1,1'-bi(2-naphthol) ((S)-BINOL, (S)-1) (16.26 g, 56.8 mmol, 2.0 equiv) (Note 5). The flask is sealed with three rubber septa (one of which is fitted with a thermometer) and evacuated and backfilled with nitrogen three times (5 minutes under vacuum per cycle). A flame-dried 500 mL round-bottomed flask with a 24/40 joint and a 1" Teflon coated egg-shaped magnetic stir bar is charged with sodium tert -butoxide (10.92 g, 113.6 mmol, 4.0 equiv) (Note 6). The flask is sealed with a rubber septum and evacuated and backfilled with nitrogen three times (5 minutes under vacuum per cycle)

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Data from: Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: advantage of enclosed filter

    No full text
    Aqueous environmental DNA (eDNA) is an emerging efficient non-invasive tool for species inventory studies. To maximize performance of downstream quantitative PCR (qPCR) and next-generation sequencing (NGS) applications, quality and quantity of the starting material is crucial, calling for optimized capture, storage and extraction techniques of eDNA. Previous comparative studies for eDNA capture/storage have tested precipitation and ‘open’ filters. However, practical ‘enclosed’ filters which reduce unnecessary handling have not been included. Here, we fill this gap by comparing a filter capsule (Sterivex-GP polyethersulfone, pore size 0·22 μm, hereafter called SX) with commonly used methods. Our experimental set-up, covering altogether 41 treatments combining capture by precipitation or filtration with different preservation techniques and storage times, sampled one single lake (and a fish-free control pond). We selected documented capture methods that have successfully targeted a wide range of fauna. The eDNA was extracted using an optimized protocol modified from the DNeasy® Blood & Tissue kit (Qiagen). We measured total eDNA concentrations and Cq-values (cycles used for DNA quantification by qPCR) to target specific mtDNA cytochrome b (cyt b) sequences in two local keystone fish species. SX yielded higher amounts of total eDNA along with lower Cq-values than polycarbonate track-etched filters (PCTE), glass fibre filters (GF) or ethanol precipitation (EP). SX also generated lower Cq-values than cellulose nitrate filters (CN) for one of the target species. DNA integrity of SX samples did not decrease significantly after 2 weeks of storage in contrast to GF and PCTE. Adding preservative before storage improved SX results. In conclusion, we recommend SX filters (originally designed for filtering micro-organisms) as an efficient capture method for sampling macrobial eDNA. Ethanol or Longmire's buffer preservation of SX immediately after filtration is recommended. Preserved SX capsules may be stored at room temperature for at least 2 weeks without significant degradation. Reduced handling and less exposure to outside stress compared with other filters may contribute to better eDNA results. SX capsules are easily transported and enable eDNA sampling in remote and harsh field conditions as samples can be filtered/preserved on site

    A Comprehensive Human Gastric Cancer Organoid Biobank Captures Tumor Subtype Heterogeneity and Enables Therapeutic Screening

    No full text
    Leung and colleagues established a biobank of patient-derived gastric cancer organoids that encompasses a diverse array of subtypes and maintained long-term similarity to the original tumors. They used the organoids to perform large-scale drug screening that identified potential target drugs and could guide patient drug selection
    corecore