260 research outputs found

    A expansão da União Européia em 2004 e seus impactos no agronegócio brasileiro

    Get PDF
    International trade has acquired increasing importance for the Brazilian economy, especially for agribusiness. In this way, understanding other countries policies that affects international trade and its impacts in this country is equally important. The European Union (EU) is one of the most important Brazilian trade partners and it is known by strong interference on its agricultural sector. The recent European enlargement and the last Common Agricultural Policy (CAP) Reform have been studied at different regions of the World but there is a lack of knowledge regarding the impacts of this on Brazilian rural sectors. This paper aims to assess the impacts of the 2004 EU enlargement on Brazilian agribusiness using the general equilibrium model Global Trade Analysis Project (GTAP) under three alternatives scenarios for CAP Reform. The sectoral impacts were more relevant within the EU, as expected, as the measures take place in this region. The aggregate impact of the enlargement with or without decoupling was not important for the Brazilian economy. But it was found that different policies affect some Brazilian agribusiness sectors performance as oilseeds and bovine meat. Exports from these Brazilian sectors grow with enlargement as decoupling takes place, though they decrease under enlargement without decoupling.international economics, international trade, general equilibrium, economic integration., Political Economy, F11, F15, Q17.,

    Cell atlas of the Atlantic salmon spleen reveals immune cell heterogeneity and cellspecific responses to bacterial infection

    Get PDF
    The spleen is a conserved secondary lymphoid organ that emerged in parallel to adaptive immunity in early jawed vertebrates. Recent studies have applied single cell transcriptomics to reveal the cellular composition of spleen in several species, cataloguing diverse immune cell types and subpopulations.In this study, 51,119 spleen nuclei transcriptomes were comprehensively investigated in the commercially important teleost Atlantic salmon (Salmo salar L.), contrasting control animals with those challenged with the bacterial pathogen Aeromonas salmonicida. We identified clusters of nuclei representing the expected major cell types, namely T cells, B cells, natural killer-like cells, granulocytes, mononuclear phagocytes, endothelial cells, mesenchymal cells, erythrocytes and thrombocytes. We discovered heterogeneity within several immune lineages, providing evidence for resident macrophages and melanomacrophages, infiltrating monocytes, several candidate dendritic cell subpopulations, and B cells at distinct stages of differentiation, including plasma cells and an igt+ subset. We provide evidence for twelve candidate T cell subsets, including cd4+ T helper and regulatory T cells, one cd8+ subset, three γδT subsets, and populations double negative for cd4 and cd8. The number of genes showing differential expression during the early stages of Aeromonas infection was highly variable across immune cell types, with the largest changes observed in macrophages and infiltrating monocytes, followed by resting mature B cells. Our analysis provides evidence for a local inflammatory response to infection alongside B cell maturation in the spleen, and upregulation of ccr9 genes in igt+ B cells, T helper and cd8+ cells, and monocytes, consistent with the recruitment of immune cell populations to the gut to deal with Aeromonas infection. Overall, this study provides a new cell-resolved perspective of the immune actions of Atlantic salmon spleen, highlighting extensive heterogeneity hidden to bulk transcriptomics. We further provide a large catalogue of cell-specific marker genes that can be leveraged to further explore the function and structural organization of the salmonid immune system

    Seedling root architecture and its relationship with seed yield across diverse environments in \u3ci\u3ePhaseolus vulgaris\u3c/i\u3e

    Get PDF
    Seedling root phenotypes may have important impacts on fitness and are more easily measured than mature root phenotypes. We phenotyped the roots of 577 genotypes of common bean (Phaseolus vulgaris), representing the bulk of the genetic diversity for recent cultivars and landraces in this species. Root architectural phenotypes of seedlings germinated for nine days were compared to root architectural phenotypes in the field as well as seed yield across 51 environments with an array of abiotic stresses including drought, nutrient deficiency, and heat, as well as non-stress conditions. We observed repeatability ranging from 0.52–0.57 for measures of root phenotypes in seedlings, significant variation in root phene states between gene pools and races, relationships between seedling and field phenotypes, and varying correlations between seedling root phenes and seed yield under a variety of environmental conditions. Seed yield was significantly related to seedling basal root number in 22% of environments, seedling adventitious root abundance in 35% of environments, and seedling taproot length in 12% of environments. Cluster analysis grouped genotypes by their aggregated seedling root phenotype, and variation in seed yield among these clusters under non-stress, drought, and low fertility conditions was observed. These results highlight the existence and influence of integrated root phenotypes for adaptation to edaphic stress, and suggest root phenes have value as breeding targets under real-world conditions

    Seedling root architecture and its relationship with seed yield across diverse environments in \u3ci\u3ePhaseolus vulgaris\u3c/i\u3e

    Get PDF
    Seedling root phenotypes may have important impacts on fitness and are more easily measured than mature root phenotypes. We phenotyped the roots of 577 genotypes of common bean (Phaseolus vulgaris), representing the bulk of the genetic diversity for recent cultivars and landraces in this species. Root architectural phenotypes of seedlings germinated for nine days were compared to root architectural phenotypes in the field as well as seed yield across 51 environments with an array of abiotic stresses including drought, nutrient deficiency, and heat, as well as non-stress conditions. We observed repeatability ranging from 0.52–0.57 for measures of root phenotypes in seedlings, significant variation in root phene states between gene pools and races, relationships between seedling and field phenotypes, and varying correlations between seedling root phenes and seed yield under a variety of environmental conditions. Seed yield was significantly related to seedling basal root number in 22% of environments, seedling adventitious root abundance in 35% of environments, and seedling taproot length in 12% of environments. Cluster analysis grouped genotypes by their aggregated seedling root phenotype, and variation in seed yield among these clusters under non-stress, drought, and low fertility conditions was observed. These results highlight the existence and influence of integrated root phenotypes for adaptation to edaphic stress, and suggest root phenes have value as breeding targets under real-world conditions

    Seedling root architecture and its relationship with seed yield across diverse environments in \u3ci\u3ePhaseolus vulgaris\u3c/i\u3e

    Get PDF
    Seedling root phenotypes may have important impacts on fitness and are more easily measured than mature root phenotypes. We phenotyped the roots of 577 genotypes of common bean (Phaseolus vulgaris), representing the bulk of the genetic diversity for recent cultivars and landraces in this species. Root architectural phenotypes of seedlings germinated for nine days were compared to root architectural phenotypes in the field as well as seed yield across 51 environments with an array of abiotic stresses including drought, nutrient deficiency, and heat, as well as non-stress conditions. We observed repeatability ranging from 0.52–0.57 for measures of root phenotypes in seedlings, significant variation in root phene states between gene pools and races, relationships between seedling and field phenotypes, and varying correlations between seedling root phenes and seed yield under a variety of environmental conditions. Seed yield was significantly related to seedling basal root number in 22% of environments, seedling adventitious root abundance in 35% of environments, and seedling taproot length in 12% of environments. Cluster analysis grouped genotypes by their aggregated seedling root phenotype, and variation in seed yield among these clusters under non-stress, drought, and low fertility conditions was observed. These results highlight the existence and influence of integrated root phenotypes for adaptation to edaphic stress, and suggest root phenes have value as breeding targets under real-world conditions

    Seedling root architecture and its relationship with seed yield across diverse environments in \u3ci\u3ePhaseolus vulgaris\u3c/i\u3e

    Get PDF
    Seedling root phenotypes may have important impacts on fitness and are more easily measured than mature root phenotypes. We phenotyped the roots of 577 genotypes of common bean (Phaseolus vulgaris), representing the bulk of the genetic diversity for recent cultivars and landraces in this species. Root architectural phenotypes of seedlings germinated for nine days were compared to root architectural phenotypes in the field as well as seed yield across 51 environments with an array of abiotic stresses including drought, nutrient deficiency, and heat, as well as non-stress conditions. We observed repeatability ranging from 0.52–0.57 for measures of root phenotypes in seedlings, significant variation in root phene states between gene pools and races, relationships between seedling and field phenotypes, and varying correlations between seedling root phenes and seed yield under a variety of environmental conditions. Seed yield was significantly related to seedling basal root number in 22% of environments, seedling adventitious root abundance in 35% of environments, and seedling taproot length in 12% of environments. Cluster analysis grouped genotypes by their aggregated seedling root phenotype, and variation in seed yield among these clusters under non-stress, drought, and low fertility conditions was observed. These results highlight the existence and influence of integrated root phenotypes for adaptation to edaphic stress, and suggest root phenes have value as breeding targets under real-world conditions

    Observing the Evolution of the Universe

    Full text link
    How did the universe evolve? The fine angular scale (l>1000) temperature and polarization anisotropies in the CMB are a Rosetta stone for understanding the evolution of the universe. Through detailed measurements one may address everything from the physics of the birth of the universe to the history of star formation and the process by which galaxies formed. One may in addition track the evolution of the dark energy and discover the net neutrino mass. We are at the dawn of a new era in which hundreds of square degrees of sky can be mapped with arcminute resolution and sensitivities measured in microKelvin. Acquiring these data requires the use of special purpose telescopes such as the Atacama Cosmology Telescope (ACT), located in Chile, and the South Pole Telescope (SPT). These new telescopes are outfitted with a new generation of custom mm-wave kilo-pixel arrays. Additional instruments are in the planning stages.Comment: Science White Paper submitted to the US Astro2010 Decadal Survey. Full list of 177 author available at http://cmbpol.uchicago.ed

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability
    corecore