27 research outputs found

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Bioprospecting Carbohydrate-Active Enzymes in Lignocellulose-Degrading Microcosms Enriched from Pulp Mill Anaerobic Granules and Digestive Microbiomes of Canadian Beaver and North American Moose

    No full text
    Lignocellulosic biomass, including wood fibre, is an abundant resource for biorefining; however, the structural heterogeneity and occurrence of inhibitors present challenges to corresponding bioconversion technologies. In an effort to identify carbohydrate-active enzymes (CAZymes) with potential to transform wood-derived feedstocks, multiple lignocellulosic microcosms were established from pulp mill anaerobic granules, beaver droppings and moose rumen and cultivated for over 3 years on (i) cellulose, (ii) cellulose + lignosulphonate, (iii) cellulose + tannic acid, and (iv) pretreated poplar. Microbial community analysis of 16S rRNA amplicons revealed post-enrichment decrease in species richness and substrate-induced convergence. Amendment with added inhibitors (ii, iii) or pretreated poplar particularly enriched known biomass degraders along with microbes belonging to poorly-described lineages including BSV26, SJA-28, TG3 classes, OPB54 and Cloacamonales orders. Comparative metagenomics targeting cellulose- and pretreated poplar-fed microcosms revealed CAZyme profiles that converged based on substrate for gut microbiomes, while a separate cluster for anaerobic granules revealed the impact of inoculum. Compared to the cellulose-fed microcosms, the pretreated poplar-fed counterparts were enriched with reported broad substrate families with cellulolytic and hemicellulolytic activities (GH2, GH3, GH5, and GH43), as well as putative ÎČ-L-arabinofuranosidases (GH127), glucuronoyl methylesterases (CE15), and pectinases (PL1, GH28, CE8, and GH105). While no major differences emerged from the profiles of proteins with unknown function within the 416 predicted polysaccharide utilization loci and catalytic cellulosomal subunits, 2 carbohydrate-binding proteins with domains of unknown function (DUF3459-CBM48-GH13_10 and DUF5011-CBM4) were consistently present in pretreated poplar-fed microcosms only. Metasecretomes from the microcosms at ~50% and ~80% g COD substrate to biogas conversion were functionally characterized. Despite the similar saccharification capacities of different enrichments, protein profiles of the pretreated poplar-fed microcosms observed by SDS-PAGE were distinct from the cellulose-fed ones. Moreover, the emergence of new bands and greater activity on pectin, xylans and mannans from secretomes at the later stage implied a succession of enzymes that hydrolyze ÎČ-(1→4)-glycosidic bonds in cellulose before other polysaccharides. Collectively, putative lignocellulolytic proteins specialized for processing forest fibre were revealed via comparative meta-analyses for downstream characterization. Also, the potential of the microcosms serving as a repertoire of biocatalysts for developing wood specific-enzymatic cocktails was confirmed.Ph.D.2020-11-19 00:00:0

    Comparative metagenomics of cellulose- and poplar hydrolysate-degrading microcosms from gut microflora of the Canadian Beaver (Castor canadensis) and North American moose (Alces americanus) after long-term enrichment

    No full text
    To identify carbohydrate-active enzymes (CAZymes) that might be particularly relevant for wood fiber processing, we performed a comparative metagenomic analysis of digestive systems from Canadian beaver (Castor canadensis) and North American moose (Alces americanus) following 3 years of enrichment on either microcrystalline cellulose or poplar hydrolysate. In total, 9,386 genes encoding CAZymes and carbohydrate-binding modules (CBMs) were identified, with up to half predicted to originate from Firmicutes, Bacteroidetes, Chloroflexi, and Proteobacteria phyla, and up to 17% from unknown phyla. Both PCA and hierarchical cluster analysis distinguished the annotated glycoside hydrolase (GH) distributions identified herein, from those previously reported for grass-feeding mammals and herbivorous foragers. The CAZyme profile of moose rumen enrichments also differed from a recently reported moose rumen metagenome, most notably by the absence of GH13-appended dockerins. Consistent with substrate-driven convergence, CAZyme profiles from both poplar hydrolysate-fed cultures differed from cellulose-fed cultures, most notably by increased numbers of unique sequences belonging to families GH3, GH5, GH43, GH53, and CE1. Moreover, pairwise comparisons of moose rumen enrichments further revealed higher counts of GH127 and CE15 families in cultures fed with poplar hydrolysate. To expand our scope to lesser known carbohydrate-active proteins, we identified and compared multi-domain proteins comprising both a CBM and domain of unknown function (DUF) as well as proteins with unknown function within the 416 predicted polysaccharide utilization loci (PULs). Interestingly, DUF362, identified in iron-sulfur proteins, was consistently appended to CBM9; on the other hand, proteins with unknown function from PULs shared little identity unless from identical PULs. Overall, this study sheds new light on the lignocellulose degrading capabilities of microbes originating from digestive systems of mammals known for fiber-rich diets, and highlights the value of enrichment to select new CAZymes from metagenome sequences for future biochemical characterization.Peer reviewe

    DataSheet_1_Taxonomic composition and carbohydrate-active enzyme content in microbial enrichments from pulp mill anaerobic granules after cultivation on lignocellulosic substrates.zip

    No full text
    Metagenomes of lignocellulose-degrading microbial communities are reservoirs of carbohydrate-active enzymes relevant to biomass processing. Whereas several metagenomes of natural digestive systems have been sequenced, the current study analyses metagenomes originating from an industrial anaerobic digester that processes effluent from a cellulose pulp mill. Both 16S ribosomal DNA and metagenome sequences were obtained following anaerobic cultivation of the digester inoculum on cellulose and pretreated (steam exploded) poplar wood chips. The community composition and profile of predicted carbohydrate-active enzymes were then analyzed in detail. Recognized lignocellulose degraders were abundant in the resulting cultures, including populations belonging to Clostridiales and Bacteroidales orders. Poorly defined taxonomic lineages previously identified in other lignocellulose-degrading communities were also detected, including the uncultivated Firmicutes lineage OPB54 which represented nearly 10% of the cellulose-fed enrichment even though it was not detected in the bioreactor inoculum. In total, 3580 genes encoding carbohydrate-active enzymes were identified through metagenome sequencing. Similar to earlier enrichments of animal digestive systems, the profile encoded by the bioreactor inoculum following enrichment on pretreated wood was distinguished from the cellulose counterpart by a higher occurrence of enzymes predicted to act on pectin. The majority (> 93%) of carbohydrate-active enzymes predicted to act on plant polysaccharides were identified in the metagenome assembled genomes, permitting taxonomic assignment. The taxonomic assignment revealed that only a small selection of organisms directly participates in plant polysaccharide deconstruction and supports the rest of the community.</p

    Comparative Metagenomics of Cellulose- and Poplar Hydrolysate-Degrading Microcosms from Gut Microflora of the Canadian Beaver (Castor canadensis) and North American Moose (Alces americanus) after Long-Term Enrichment

    No full text
    To identify carbohydrate-active enzymes (CAZymes) that might be particularly relevant for wood fiber processing, we performed a comparative metagenomic analysis of digestive systems from Canadian beaver (Castor canadensis) and North American moose (Alces americanus) following 3 years of enrichment on either microcrystalline cellulose or poplar hydrolysate. In total, 9,386 genes encoding CAZymes and carbohydrate-binding modules (CBMs) were identified, with up to half predicted to originate from Firmicutes, Bacteroidetes, Chloroflexi, and Proteobacteria phyla, and up to 17% from unknown phyla. Both PCA and hierarchical cluster analysis distinguished the annotated glycoside hydrolase (GH) distributions identified herein, from those previously reported for grass-feeding mammals and herbivorous foragers. The CAZyme profile of moose rumen enrichments also differed from a recently reported moose rumen metagenome, most notably by the absence of GH13-appended dockerins. Consistent with substrate-driven convergence, CAZyme profiles from both poplar hydrolysate-fed cultures differed from cellulose-fed cultures, most notably by increased numbers of unique sequences belonging to families GH3, GH5, GH43, GH53, and CE1. Moreover, pairwise comparisons of moose rumen enrichments further revealed higher counts of GH127 and CE15 families in cultures fed with poplar hydrolysate. To expand our scope to lesser known carbohydrate-active proteins, we identified and compared multi-domain proteins comprising both a CBM and domain of unknown function (DUF) as well as proteins with unknown function within the 416 predicted polysaccharide utilization loci (PULs). Interestingly, DUF362, identified in iron–sulfur proteins, was consistently appended to CBM9; on the other hand, proteins with unknown function from PULs shared little identity unless from identical PULs. Overall, this study sheds new light on the lignocellulose degrading capabilities of microbes originating from digestive systems of mammals known for fiber-rich diets, and highlights the value of enrichment to select new CAZymes from metagenome sequences for future biochemical characterization

    High Prevalence of Late-Onset Fabry Cardiomyopathy in a Cohort of 499 Non-Selective Patients with Left Ventricular Hypertrophy: The Asian Fabry Cardiomyopathy High-Risk Screening Study (ASIAN-FAME)

    No full text
    Left ventricular hypertrophy (LVH) caused by cardiac variant Fabry disease (FD) is typically late-onset and may mimic LVH caused by abnormal loading conditions. We aimed to determine the prevalence of FD in a non-selective patient population of everyday practice presenting with LVH, including those with hypertension and valve disease. We measured plasma alpha-galactosidase A activity using dried blood spot tests in 499 (age = 66 ± 13 years; 336 men) Hong Kong Chinese patients with LVH defined as maximal LV septal/posterior wall thickness ≄13 mm on echocardiography. Patients with low enzyme activity underwent mutation analysis of the GLA gene. Eight (age = 53−74 years; all men) unrelated patients (1.6%) had low plasma alpha-galactosidase A activity (0.57 ± 0.27 ÎŒmol/L wb/hr) and all were confirmed to have the GLA IVS4 + 919G &gt; A mutation. FD patients presented with heart failure (n = 5), heart block (n = 2), ventricular tachycardia (n = 1), chest pain (n = 3), and/or murmur (n = 1). Uncontrolled hypertension (n = 4) and/or severe mitral/aortic valve pathology (n = 2) were frequent. Ethnic subgroups included Teochew (n = 5), Canton (n = 2), and Wenzhou (n = 1). Endomyocardial biopsy (n = 6) revealed hypertrophic myocytes with vacuolization and dense lamellar bodies. Late-onset IVS4 + 919G &gt; A FD is prevalent among Chinese LVH patients, and should be considered as a cause of LVH in adult patients even when hypertension and/or valve pathology are present

    Screening for Fabry Disease in patients with unexplained left ventricular hypertrophy.

    No full text
    Fabry Disease (FD) is a systemic disorder that can result in cardiovascular, renal, and neurovascular disease leading to reduced life expectancy. FD should be considered in the differential of all patients with unexplained left ventricular hypertrophy (LVH). We therefore performed a prospective screening study in Edmonton and Hong Kong using Dried Blood Spot (DBS) testing on patients with undiagnosed LVH. Participants found to have unexplained LVH on echocardiography were invited to participate and subsequently subjected to DBS testing. DBS testing was used to measure α-galactosidase (α-GAL) enzyme activity and for mutation analysis of the α-galactosidase (GLA) gene, both of which are required to make a diagnosis of FD. DBS testing was performed as a screening tool on patients (n = 266) in Edmonton and Hong Kong, allowing for detection of five patients with FD (2% prevalence of FD) and one patient with hydroxychloroquine-induced phenocopy. Left ventricular mass index (LVMI) by GLA genotype showed a higher LVMI in patients with IVS4 + 919G > A mutations compared to those without the mutation. Two patients were initiated on ERT and hydroxychloroquine was discontinued in the patient with a phenocopy of FD. Overall, we detected FD in 2% of our screening cohort using DBS testing as an effective and easy to administer screening tool in patients with unexplained LVH. Utilizing DBS testing to screen for FD in patients with otherwise undiagnosed LVH is clinically important due to the availability of effective therapies and the value of cascade screening in extended families

    Galectin-1 Co-clusters CD43/CD45 on Dendritic Cells and Induces Cell Activation and Migration through Syk and Protein Kinase C Signaling*

    No full text
    Galectin-1 is a galactoside-binding lectin expressed in multiple tissues that has pleiotropic immunomodulatory functions. We previously showed that galectin-1 activates human monocyte-derived dendritic cells (MDDCs) and triggers a specific genetic program that up-regulates DC migration through the extracellular matrix, an integral property of mucosal DCs. Here, we identify the galectin-1 receptors on MDDCs and immediate downstream effectors of galectin-1-induced MDDC activation and migration. Galectin-1 binding to surface CD43 and CD45 on MDDCs induced an unusual unipolar co-clustering of these receptors and activates a dose-dependent calcium flux that is abrogated by lactose. Using a kinome screen and a systems biology approach, we identified Syk and protein kinase C tyrosine kinases as mediators of the DC activation effects of galectin-1. Galectin-1, but not lipopolysaccharide, stimulated Syk phosphorylation and recruitment of phosphorylated Syk to the CD43 and CD45 co-cluster on MDDCs. Inhibitors of Syk and protein kinase C signaling abrogated galectin-1-induced DC activation as monitored by interleukin-6 production; and MMP-1, -10, and -12 gene up-regulation; and enhanced migration through the extracellular matrix. The latter two are specific features of galectin-1-activated DCs. Interestingly, we also found that galectin-1 can prime DCs to respond more quickly to low dose lipopolysaccharide stimulation. Finally, we underscore the biological relevance of galectin-1-enhanced DC migration by showing that intradermal injection of galectin-1 in MRL-fas mice, which have a defect in skin DC emigration, increased the in vivo migration of dermal DCs to draining lymph nodes
    corecore