197 research outputs found

    Dichloridobis[(ferrocenyl­methyl­idene)(furan-2-ylmeth­yl)amine-κN]palladium(II)

    Get PDF
    The title compound, [Fe2Pd(C5H5)2(C11H10NO)2Cl2], exhibits a square-planar geometry at the PdII atom, which is determined by inversion-related chlorine and ferrocenyl­imine mol­ecules across a center of symmetry. The ferrocenyl­imine moieties are trans to each other

    Genuinely Distributed Byzantine Machine Learning

    Full text link
    Machine Learning (ML) solutions are nowadays distributed, according to the so-called server/worker architecture. One server holds the model parameters while several workers train the model. Clearly, such architecture is prone to various types of component failures, which can be all encompassed within the spectrum of a Byzantine behavior. Several approaches have been proposed recently to tolerate Byzantine workers. Yet all require trusting a central parameter server. We initiate in this paper the study of the ``general'' Byzantine-resilient distributed machine learning problem where no individual component is trusted. We show that this problem can be solved in an asynchronous system, despite the presence of 13\frac{1}{3} Byzantine parameter servers and 13\frac{1}{3} Byzantine workers (which is optimal). We present a new algorithm, ByzSGD, which solves the general Byzantine-resilient distributed machine learning problem by relying on three major schemes. The first, Scatter/Gather, is a communication scheme whose goal is to bound the maximum drift among models on correct servers. The second, Distributed Median Contraction (DMC), leverages the geometric properties of the median in high dimensional spaces to bring parameters within the correct servers back close to each other, ensuring learning convergence. The third, Minimum-Diameter Averaging (MDA), is a statistically-robust gradient aggregation rule whose goal is to tolerate Byzantine workers. MDA requires loose bound on the variance of non-Byzantine gradient estimates, compared to existing alternatives (e.g., Krum). Interestingly, ByzSGD ensures Byzantine resilience without adding communication rounds (on a normal path), compared to vanilla non-Byzantine alternatives. ByzSGD requires, however, a larger number of messages which, we show, can be reduced if we assume synchrony.Comment: This is a merge of arXiv:1905.03853 and arXiv:1911.07537; arXiv:1911.07537 will be retracte

    Characteristics of micro-propagated banana (Musa spp.) cultures stressed with NaCl and polyethylene glycol

    Get PDF
    The effect of NaCl and PEG was assessed on plant micro-propagation rate in banana (Musa spp.) cv., Basrai. Well micro-propagated plantlets were cultured on four different stresses of NaCl and PEG-4000 including control level: MS2b (MS0 + 3.0 mg l-1 BAP), MS2c (MS0 + 100 mol m-3 NaCl), MS2d (MS0 + 5% PEG) and MS2e (MS0 + 100 mol m-3 NaCl + 5 % PEG) for 6-weeks. Efficiency of plant micro-propagation was reduced significantly among the stressed cultures. Similarly, photosynthetic pigments like chl a was decreased non-significantly but chl b, chl ab were decreased significantly. Total carotenoids were increased in the saline as well as PEG stressed cultures. Cell size of epidermis and aerenchyma was increased (p < 0.05), while parenchyma decreased. Proline and glycinebetain contents were increased (p < 0.05) in each stressed culture but were high in MS2 than in MS3 and MS4 cultures. Meanwhile, proteins, sugars, phenolics and nitrates were observed to be in the reversed (p < 0.05) phenomena. In conclusion, NaCl treatment was observed to be most toxic than the PEG or PEG with NaCl on the banana micro-propagation.Key words: Musa spp., micro-propagation, NaCl (sodium chloride), PEG (polyethylene glycol), chlorophyll contents, proline, reducing sugars

    The state of ambient air quality in Pakistan—a review

    Get PDF
    Background and purpose: Pakistan, during the last decade, has seen an extensive escalation in population growth, urbanization, and industrialization, together with a great increase in motorization and energy use. As a result, a substantial rise has taken place in the types and number of emission sources of various air pollutants. However, due to the lack of air quality management capabilities, the country is suffering from deterioration of air quality. Evidence from various governmental organizations and international bodies has indicated that air pollution is a significant risk to the environment, quality of life, and health of the population. The Government has taken positive steps toward air quality management in the form of the Pakistan Clean Air Program and has recently established a small number of continuous monitoring stations. However, ambient air quality standards have not yet been established. This paper reviews the data being available on the criteria air pollutants: particulate matter (PM), sulfur dioxide, ozone, carbon monoxide, nitrogen dioxide, and lead. Methods: Air pollution studies in Pakistan published in both scientific journals and by the Government have been reviewed and the reported concentrations of PM, SO2, O3, CO, NO2, and Pb collated. A comparison of the levels of these air pollutants with the World Health Organization air quality guidelines was carried out. Results: Particulate matter was the most serious air pollutant in the country. NO2 has emerged as the second high-risk pollutant. The reported levels of PM, SO2, CO, NO2, and Pb were many times higher than the World Health Organization air quality guidelines. Only O3 concentrations were below the guidelines. Conclusions: The current state of air quality calls for immediate action to tackle the poor air quality. The establishment of ambient air quality standards, an extension of the continuous monitoring sites, and the development of emission control strategies are essential. © Springer-Verlag 2009

    First measurement of the |t|-dependence of coherent J/ψ photonuclear production

    Get PDF
    The first measurement of the cross section for coherent J/ψ photoproduction as a function of |t|, the square of the momentum transferred between the incoming and outgoing target nucleus, is presented. The data were measured with the ALICE detector in ultra-peripheral Pb–Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02TeV with the J/ψ produced in the central rapidity region |y|<0.8, which corresponds to the small Bjorken-x range (0.3−1.4)×10−3. The measured |t|-dependence is not described by computations based only on the Pb nuclear form factor, while the photonuclear cross section is better reproduced by models including shadowing according to the leading-twist approximation, or gluon-saturation effects from the impact-parameter dependent Balitsky–Kovchegov equation. These new results are therefore a valid tool to constrain the relevant model parameters and to investigate the transverse gluonic structure at very low Bjorken-x.publishedVersio

    Resolving the strange behavior of extraterrestrial potassium in the upper atmosphere

    Get PDF
    It has been known since the 1960s that the layers of Na and K atoms, which occur between 80 and 105 km in the Earth's atmosphere as a result of meteoric ablation, exhibit completely different seasonal behavior. In the extratropics Na varies annually, with a pronounced wintertime maximum and summertime minimum. However, K varies semiannually with a small summertime maximum and minima at the equinoxes. This contrasting behavior has never been satisfactorily explained. Here we use a combination of electronic structure and chemical kinetic rate theory to determine two key differences in the chemistries of K and Na. First, the neutralization of K+ ions is only favored at low temperatures during summer. Second, cycling between K and its major neutral reservoir KHCO3 is essentially temperature independent. A whole atmosphere model incorporating this new chemistry, together with a meteor input function, now correctly predicts the seasonal behavior of the K layer

    Particle identification in ALICE : a Bayesian approach

    Get PDF
    Peer reviewe

    Flow Dominance and Factorization of Transverse Momentum Correlations in Pb-Pb Collisions at the LHC

    Get PDF
    We present the first measurement of the two-particle transverse momentum differential correlation function, P2≡ ΔpTΔpT/ pT2, in Pb-Pb collisions at sNN=2.76 TeV. Results for P2 are reported as a function of the relative pseudorapidity (Δη) and azimuthal angle (Δφ) between two particles for different collision centralities. The Δφ dependence is found to be largely independent of Δη for |Δη|≥0.9. In the 5% most central Pb-Pb collisions, the two-particle transverse momentum correlation function exhibits a clear double-hump structure around Δφ=π (i.e., on the away side), which is not observed in number correlations in the same centrality range, and thus provides an indication of the dominance of triangular flow in this collision centrality. Fourier decompositions of P2, studied as a function of the collision centrality, show that correlations at |Δη|≥0.9 can be well reproduced by a flow ansatz based on the notion that measured transverse momentum correlations are strictly determined by the collective motion of the system

    K*(892)(0) and phi(1020)meson production at high transverse momentum in pp and Pb-Pb collisions at root sNN=2.76 TeV

    Get PDF
    The production of K∗(892)0 and φ(1020) mesons in proton-proton (pp) and lead-lead (Pb-Pb) collisions at √sNN = 2.76 TeV has been analyzed using a high luminosity data sample accumulated in 2011 with the ALICE detector at the Large Hadron Collider (LHC). Transverse momentum (pT) spectra have been measured for K∗(892)0 and φ(1020) mesons via their hadronic decay channels for pT up to 20 GeV/c. The measurements in pp collisions have been compared to model calculations and used to determine the nuclear modification factor and particle ratios. The K∗(892)0/K ratio exhibits significant reduction from pp to central Pb-Pb collisions, consistent with the suppression of the K∗(892)0 yield at low pT due to rescattering of its decay products in the hadronic phase. In central Pb-Pb collisions the pT dependent φ(1020)/π and K∗(892)0/π ratios show an enhancement over pp collisions for pT ≈ 3 GeV/c, consistent with previous observations of strong radial flow. At high pT, particle ratios in Pb-Pb collisions are similar to those measured in pp collisions. In central Pb-Pb collisions, the production of K∗(892)0 and φ(1020) mesons is suppressed for pT &gt; 8 GeV/c. This suppression is similar to that of charged pions, kaons, and protons, indicating that the suppression does not depend on particle mass or flavor in the light quark sector

    J/psi production as a function of charged-particle pseudorapidity density in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    We report measurements of the inclusive J/ψ yield and average transverse momentum as a function of charged-particle pseudorapidity density dNch/dη in p–Pb collisions at sNN=5.02TeV with ALICE at the LHC. The observables are normalised to their corresponding averages in non-single diffractive events. An increase of the normalised J/ψ yield with normalised dNch/dη, measured at mid-rapidity, is observed at mid-rapidity and backward rapidity. At forward rapidity, a saturation of the relative yield is observed for high charged-particle multiplicities. The normalised average transverse momentum at forward and backward rapidities increases with multiplicity at low multiplicities and saturates beyond moderate multiplicities. In addition, the forward-to-backward nuclear modification factor ratio is also reported, showing an increasing suppression of J/ψ production at forward rapidity with respect to backward rapidity for increasing charged-particle multiplicity
    corecore