225 research outputs found
Efficient Algorithm on a Non-staggered Mesh for Simulating Rayleigh-Benard Convection in a Box
An efficient semi-implicit second-order-accurate finite-difference method is
described for studying incompressible Rayleigh-Benard convection in a box, with
sidewalls that are periodic, thermally insulated, or thermally conducting.
Operator-splitting and a projection method reduce the algorithm at each time
step to the solution of four Helmholtz equations and one Poisson equation, and
these are are solved by fast direct methods. The method is numerically stable
even though all field values are placed on a single non-staggered mesh
commensurate with the boundaries. The efficiency and accuracy of the method are
characterized for several representative convection problems.Comment: REVTeX, 30 pages, 5 figure
Mean flow and spiral defect chaos in Rayleigh-Benard convection
We describe a numerical procedure to construct a modified velocity field that
does not have any mean flow. Using this procedure, we present two results.
Firstly, we show that, in the absence of mean flow, spiral defect chaos
collapses to a stationary pattern comprising textures of stripes with angular
bends. The quenched patterns are characterized by mean wavenumbers that
approach those uniquely selected by focus-type singularities, which, in the
absence of mean flow, lie at the zig-zag instability boundary. The quenched
patterns also have larger correlation lengths and are comprised of rolls with
less curvature. Secondly, we describe how mean flow can contribute to the
commonly observed phenomenon of rolls terminating perpendicularly into lateral
walls. We show that, in the absence of mean flow, rolls begin to terminate into
lateral walls at an oblique angle. This obliqueness increases with Rayleigh
number.Comment: 14 pages, 19 figure
Dynamics of fluctuations in a fluid below the onset of Rayleigh-B\'enard convection
We present experimental data and their theoretical interpretation for the
decay rates of temperature fluctuations in a thin layer of a fluid heated from
below and confined between parallel horizontal plates. The measurements were
made with the mean temperature of the layer corresponding to the critical
isochore of sulfur hexafluoride above but near the critical point where
fluctuations are exceptionally strong. They cover a wide range of temperature
gradients below the onset of Rayleigh-B\'enard convection, and span wave
numbers on both sides of the critical value for this onset. The decay rates
were determined from experimental shadowgraph images of the fluctuations at
several camera exposure times. We present a theoretical expression for an
exposure-time-dependent structure factor which is needed for the data analysis.
As the onset of convection is approached, the data reveal the critical
slowing-down associated with the bifurcation. Theoretical predictions for the
decay rates as a function of the wave number and temperature gradient are
presented and compared with the experimental data. Quantitative agreement is
obtained if allowance is made for some uncertainty in the small spacing between
the plates, and when an empirical estimate is employed for the influence of
symmetric deviations from the Oberbeck-Boussinesq approximation which are to be
expected in a fluid with its density at the mean temperature located on the
critical isochore.Comment: 13 pages, 10 figures, 52 reference
How do men in the United Kingdom decide to dispose of banked sperm following cancer treatment?
Current policy in the UK recommends that men bank sperm prior to cancer treatment, but very few return to use it for reproductive purposes or agree to elective disposal even when their fertility recovers and their families are complete. We assessed the demographic, medical and psychological variables that influence the decision to dispose by contacting men (n = 499) who banked sperm more than five years previously, and asked them to complete questionnaires about their views on sperm banking, fertility and disposal. From 193 responses (38.7% response rate), 19 men (9.8%) requested disposal within four months of completing the questionnaire. Compared with men who wanted their sperm to remain in storage, they were significantly more confident that their fertility had recovered (OR = 1.78, 95% CI = 1.05-3.03, p = 0.034), saw fertility monitoring (semen analysis) as less important (OR = 0.61, 95% CI = 0.39-0.94, p = 0.026), held more positive attitudes to disposal (OR = 5.71, 95% CI = 2.89-11.27, p < 0.001), were more likely to have experienced adverse treatment side-effects (OR = 4.37, CI = 1.61-11.85, p = 0.004) and had less desire for children in the future (OR = 0.41, 95% CI = 0.26-0.64, p < 0.001). Information about men's reasons to dispose of banked sperm may be helpful in devising new strategies to encourage men to engage with sperm banking clinics and make timely decisions about the fate of their samples
Physical Processes in Star Formation
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio
Measurement of the cross section for isolated-photon plus jet production in pp collisions at âs=13 TeV using the ATLAS detector
The dynamics of isolated-photon production in association with a jet in protonâproton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fbâ1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photonâjet invariant mass and the scattering angle in the photonâjet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
- âŠ