201 research outputs found

    MultiIoT: Towards Large-scale Multisensory Learning for the Internet of Things

    Full text link
    The Internet of Things (IoT), the network integrating billions of smart physical devices embedded with sensors, software, and communication technologies for the purpose of connecting and exchanging data with other devices and systems, is a critical and rapidly expanding component of our modern world. The IoT ecosystem provides a rich source of real-world modalities such as motion, thermal, geolocation, imaging, depth, sensors, video, and audio for prediction tasks involving the pose, gaze, activities, and gestures of humans as well as the touch, contact, pose, 3D of physical objects. Machine learning presents a rich opportunity to automatically process IoT data at scale, enabling efficient inference for impact in understanding human wellbeing, controlling physical devices, and interconnecting smart cities. To develop machine learning technologies for IoT, this paper proposes MultiIoT, the most expansive IoT benchmark to date, encompassing over 1.15 million samples from 12 modalities and 8 tasks. MultiIoT introduces unique challenges involving (1) learning from many sensory modalities, (2) fine-grained interactions across long temporal ranges, and (3) extreme heterogeneity due to unique structure and noise topologies in real-world sensors. We also release a set of strong modeling baselines, spanning modality and task-specific methods to multisensory and multitask models to encourage future research in multisensory representation learning for IoT

    How is the local-scale gravitational instability influenced by the surrounding large-scale structure formation?

    Get PDF
    We develop the formalism to investigate the relation between the evolution of the large-scale (quasi) linear structure and that of the small-scale nonlinear structure in Newtonian cosmology within the Lagrangian framework. In doing so, we first derive the standard Friedmann expansion law using the averaging procedure over the present horizon scale. Then the large-scale (quasi) linear flow is defined by averaging the full trajectory field over a large-scale domain, but much smaller than the horizon scale. The rest of the full trajectory field is supposed to describe small-scale nonlinear dynamics. We obtain the evolution equations for the large-scale and small-scale parts of the trajectory field. These are coupled to each other in most general situations. It is shown that if the shear deformation of fluid elements is ignored in the averaged large-scale dynamics, the small-scale dynamics is described by Newtonian dynamics in an effective Friedmann-Robertson-Walker (FRW) background with a local scale factor. The local scale factor is defined by the sum of the global scale factor and the expansion deformation of the averaged large-scale displacement field. This means that the evolution of small-scale fluctuations is influenced by the surrounding large-scale structure through the modification of FRW scale factor. The effect might play an important role in the structure formation scenario. Furthermore, it is argued that the so-called {\it optimized} or {\it truncated} Lagrangian perturbation theory is a good approximation in investigating the large-scale structure formation up to the quasi nonlinear regime, even when the small-scale fluctuations are in the non-linear regime.Comment: 15pages, Accepted for publication in Gravitation and General Relativit

    Temporal trends in serum concentrations of polychlorinated dioxins, furans, and PCBs among adult women living in Chapaevsk, Russia: a longitudinal study from 2000 to 2009

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The present study assessed the temporal trend in serum concentrations of polychlorinated dibenzo-<it>p</it>-dioxins, dibenzofurans, and biphenyls (PCBs) among residents of a Russian town where levels of these chemicals are elevated due to prior industrial activity.</p> <p>Methods</p> <p>Two serum samples were collected from eight adult women (in 2000 and 2009), and analyzed with gas chromatography-high-resolution mass spectrometry.</p> <p>Results</p> <p>The average total toxic equivalency (TEQ) decreased by 30% (from 36 to 25 pg/g lipid), and the average sum of PCB congeners decreased by 19% (from 291 to 211 ng/g lipid). Total TEQs decreased for seven of the eight women, and the sum of PCBs decreased for six of eight women. During this nine year period, larger decreases in serum TEQs and PCBs were found in women with greater increases in body mass index.</p> <p>Conclusions</p> <p>This study provides suggestive evidence that average serum concentrations of dioxins, furans, and PCBs are decreasing over time among residents of this town.</p

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one

    Physiological basis and image processing in functional magnetic resonance imaging: Neuronal and motor activity in brain

    Get PDF
    Functional magnetic resonance imaging (fMRI) is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD) in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities

    Dedifferentiation and Proliferation of Mammalian Cardiomyocytes

    Get PDF
    It has long been thought that mammalian cardiomyocytes are terminally-differentiated and unable to proliferate. However, myocytes in more primitive animals such as zebrafish are able to dedifferentiate and proliferate to regenerate amputated cardiac muscle.Here we test the hypothesis that mature mammalian cardiomyocytes retain substantial cellular plasticity, including the ability to dedifferentiate, proliferate, and acquire progenitor cell phenotypes. Two complementary methods were used: 1) cardiomyocyte purification from rat hearts, and 2) genetic fate mapping in cardiac explants from bi-transgenic mice. Cardiomyocytes isolated from rodent hearts were purified by multiple centrifugation and Percoll gradient separation steps, and the purity verified by immunostaining and RT-PCR. Within days in culture, purified cardiomyocytes lost their characteristic electrophysiological properties and striations, flattened and began to divide, as confirmed by proliferation markers and BrdU incorporation. Many dedifferentiated cardiomyocytes went on to express the stem cell antigen c-kit, and the early cardiac transcription factors GATA4 and Nkx2.5. Underlying these changes, inhibitory cell cycle molecules were suppressed in myocyte-derived cells (MDCs), while microRNAs known to orchestrate proliferation and pluripotency increased dramatically. Some, but not all, MDCs self-organized into spheres and re-differentiated into myocytes and endothelial cells in vitro. Cell fate tracking of cardiomyocytes from 4-OH-Tamoxifen-treated double-transgenic MerCreMer/ZEG mouse hearts revealed that green fluorescent protein (GFP) continues to be expressed in dedifferentiated cardiomyocytes, two-thirds of which were also c-kit(+).Contradicting the prevailing view that they are terminally-differentiated, postnatal mammalian cardiomyocytes are instead capable of substantial plasticity. Dedifferentiation of myocytes facilitates proliferation and confers a degree of stemness, including the expression of c-kit and the capacity for multipotency

    Identification of a Putative Network of Actin-Associated Cytoskeletal Proteins in Glomerular Podocytes Defined by Co-Purified mRNAs

    Get PDF
    The glomerular podocyte is a highly specialized and polarized kidney cell type that contains major processes and foot processes that extend from the cell body. Foot processes from adjacent podocytes form interdigitations with those of adjacent cells, thereby creating an essential intercellular junctional domain of the renal filtration barrier known as the slit diaphragm. Interesting parallels have been drawn between the slit diaphragm and other sites of cell-cell contact by polarized cells. Notably mutations in several genes encoding proteins localized to the foot processes can lead to proteinuria and kidney failure. Mutations in the Wilm's tumor gene (WT1) can also lead to kidney disease and one isoform of WT1, WT1(+KTS), has been proposed to regulate gene expression post-transcriptionally. We originally sought to identify mRNAs associated with WT1(+KTS) through an RNA immunoprecipitation and microarray approach, hypothesizing that the proteins encoded by these mRNAs might be important for podocyte morphology and function. We identified a subset of mRNAs that were remarkably enriched for transcripts encoding actin-binding proteins and other cytoskeletal proteins including several that are localized at or near the slit diaphragm. Interestingly, these mRNAs included those of α-actinin-4 and non-muscle myosin IIA that are mutated in genetic forms of kidney disease. However, isolation of the mRNAs occurred independently of the expression of WT1, suggesting that the identified mRNAs were serendipitously co-purified on the basis of co-association in a common subcellular fraction. Mass spectroscopy revealed that other components of the actin cytoskeleton co-purified with these mRNAs, namely actin, tubulin, and elongation factor 1α. We propose that these mRNAs encode a number of proteins that comprise a highly specialized protein interactome underlying the slit diaphragm. Collectively, these gene products and their interactions may prove to be important for the structural integrity of the actin cytoskeleton in podocytes as well as other polarized cell types

    Lithium and GSK3-β promoter gene variants influence white matter microstructure in bipolar disorder

    Get PDF
    Lithium is the mainstay for the treatment of bipolar disorder (BD) and inhibits glycogen synthase kinase 3-β (GSK3-β). The less active GSK3-β promoter gene variants have been associated with less detrimental clinical features of BD. GSK3-β gene variants and lithium can influence brain gray matter structure in psychiatric conditions. Diffusion tensor imaging (DTI) measures of white matter (WM) integrity showed widespred disruption of WM structure in BD. In a sample of 70 patients affected by a major depressive episode in course of BD, we investigated the effect of ongoing long-term lithium treatment and GSK3-β promoter rs334558 polymorphism on WM microstructure, using DTI and tract-based spatial statistics with threshold-free cluster enhancement. We report that the less active GSK3-β rs334558*C gene-promoter variants, and the long-term administration of the GSK3-β inhibitor lithium, were associated with increases of DTI measures of axial diffusivity (AD) in several WM fiber tracts, including corpus callosum, forceps major, anterior and posterior cingulum bundle (bilaterally including its hippocampal part), left superior and inferior longitudinal fasciculus, left inferior fronto-occipital fasciculus, left posterior thalamic radiation, bilateral superior and posterior corona radiata, and bilateral corticospinal tract. AD reflects the integrity of axons and myelin sheaths. We suggest that GSK3-β inhibition and lithium could counteract the detrimental influences of BD on WM structure, with specific benefits resulting from effects on specific WM tracts contributing to the functional integrity of the brain and involving interhemispheric, limbic, and large frontal, parietal, and fronto-occipital connections

    Observation of the diphoton decay of the Higgs boson and measurement of its properties

    Get PDF
    Peer reviewe

    Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV

    Get PDF
    Peer reviewe
    corecore