452 research outputs found

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Pleiotropic genes for metabolic syndrome and inflammation

    Get PDF
    Metabolic syndrome (MetS) has become a health and financial burden worldwide. The MetS definition captures clustering of risk factors that predict higher risk for diabetes mellitus and cardiovascular disease. Our study hypothesis is that additional to genes influencing individual MetS risk factors, genetic variants exist that influence MetS and inflammatory markers forming a predisposing MetS genetic network. To test this hypothesis a staged approach was undertaken. (a) We analyzed 17 metabolic and inflammatory traits in more than 85,500 participants from 14 large epidemiological studies within the Cross Consortia Pleiotropy Group. Individuals classified with MetS (NCEP definition), versus those without, showed on average significantly different levels for most inflammatory markers studied. (b) Paired average correlations between 8 metabolic traits and 9 inflammatory markers from the same studies as above, estimated with two methods, and factor analyses on large simulated data, helped in identifying 8 combinations of traits for follow-up in meta-analyses, out of 130,305 possible combinations between metabolic traits and inflammatory markers studied. (c) We performed correlated meta-analyses for 8 metabolic traits and 6 inflammatory markers by using existing GWAS published genetic summary results, with about 2.5 million SNPs from twelve predominantly largest GWAS consortia. These analyses yielded 130 unique SNPs/genes with pleiotropic associations (a SNP/gene associating at least one metabolic trait and one inflammatory marker). Of them twenty-five variants (seven loci newly reported) are proposed as MetS candidates. They map to genes MACF1, KIAA0754, GCKR, GRB14, COBLL1, LOC646736-IRS1, SLC39A8, NELFE, SKIV2L, STK19, TFAP2B, BAZ1B, BCL7B, TBL2, MLXIPL, LPL, TRIB1, ATXN2, HECTD4, PTPN11, ZNF664, PDXDC1, FTO, MC4R and TOMM40. Based on large data evidence, we conclude that inflammation is a feature of MetS and several gene variants show pleiotropic genetic associations across phenotypes and might explain a part of MetS correlated genetic architecture. These findings warrant further functional investigation. (C) 2014 Elsevier Inc. All rights reserved

    Diversity of Antibiotic-Active Bacteria Associated with the Brown Alga Laminaria saccharina from the Baltic Sea

    Get PDF
    Bacteria associated with the marine macroalga Laminaria saccharina, collected from the Kiel Fjord (Baltic Sea, Germany), were isolated and tested for antimicrobial activity. From a total of 210 isolates, 103 strains inhibited the growth of at least one microorganism from the test panel including Gram-negative and Gram-positive bacteria as well as a yeast. Most common profiles were the inhibition of Bacillus subtilis only (30%), B. subtilis and Staphylococcus lentus (25%), and B. subtilis, S. lentus, and Candida albicans (11%). In summary, the antibiotic-active isolates covered 15 different activity patterns suggesting various modes of action. On the basis of 16S rRNA gene sequence similarities >99%, 45 phylotypes were defined, which were classified into 21 genera belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Phylogenetic analysis of 16S rRNA gene sequences revealed that four isolates possibly represent novel species or even genera. In conclusion, L. saccharina represents a promising source for the isolation of new bacterial taxa and antimicrobially active bacteria

    Differential Gene Expression Changes in Children with Severe Dengue Virus Infections

    Get PDF
    Dengue virus infection is an impressively emerging disease that can be fatal in severe cases. It is not precisely clear why some patients progress to severe disease whereas most patients only suffer from a mild infection. In severe disease, a “cytokine storm” is induced, which indicates the release of a great number of inflammatory mediators (“cytokines”). Evidence suggested that a balance could be involved between protective and pathologic cytokine release patterns. We studied this concept in a cohort of Indonesian children with severe dengue disease using a gene expression profiling method

    Chitohexaose Activates Macrophages by Alternate Pathway through TLR4 and Blocks Endotoxemia

    Get PDF
    Sepsis is a consequence of systemic bacterial infections leading to hyper activation of immune cells by bacterial products resulting in enhanced release of mediators of inflammation. Endotoxin (LPS) is a major component of the outer membrane of Gram negative bacteria and a critical factor in pathogenesis of sepsis. Development of antagonists that inhibit the storm of inflammatory molecules by blocking Toll like receptors (TLR) has been the main stay of research efforts. We report here that a filarial glycoprotein binds to murine macrophages and human monocytes through TLR4 and activates them through alternate pathway and in the process inhibits LPS mediated classical activation which leads to inflammation associated with endotoxemia. The active component of the nematode glycoprotein mediating alternate activation of macrophages was found to be a carbohydrate residue, Chitohexaose. Murine macrophages and human monocytes up regulated Arginase-1 and released high levels of IL-10 when incubated with chitohexaose. Macrophages of C3H/HeJ mice (non-responsive to LPS) failed to get activated by chitohexaose suggesting that a functional TLR4 is critical for alternate activation of macrophages also. Chitohexaose inhibited LPS induced production of inflammatory molecules TNF-α, IL-1β and IL-6 by macropahges in vitro and in vivo in mice. Intraperitoneal injection of chitohexaose completely protected mice against endotoxemia when challenged with a lethal dose of LPS. Furthermore, Chitohexaose was found to reverse LPS induced endotoxemia in mice even 6/24/48 hrs after its onset. Monocytes of subjects with active filarial infection displayed characteristic alternate activation markers and were refractory to LPS mediated inflammatory activation suggesting an interesting possibility of subjects with filarial infections being less prone to develop of endotoxemia. These observations that innate activation of alternate pathway of macrophages by chtx through TLR4 has offered novel opportunities to cell biologists to study two mutually exclusive activation pathways of macrophages being mediated through a single receptor

    Malignant mixed Mullerian tumors of the uterus: histopathological evaluation of cell cycle and apoptotic regulatory proteins

    Get PDF
    <p>Abstract</p> <p>Aim</p> <p>The aim of our study was to evaluate survival outcomes in malignant mixed Mullerian tumors (MMMT) of the uterus with respect to the role of cell cycle and apoptotic regulatory proteins in the carcinomatous and sarcomatous components.</p> <p>Methods</p> <p>23 cases of uterine MMMT identified from the Saskatchewan Cancer Agency (1970-1999) were evaluated. Immunohistochemical expression of Bad, Mcl-1, bcl-x, bak, mdm2, bax, p16, p21, p53, p27, EMA, Bcl-2, Ki67 and PCNA was correlated with clinico-pathological data including survival outcomes.</p> <p>Results</p> <p>Histopathological examination confirmed malignant epithelial component with homologous (12 cases) and heterologous (11 cases) sarcomatous elements. P53 was strongly expressed (70-95%) in 15 cases and negative in 5 cases. The average survival in the p53+ve cases was 3.56 years as opposed to 8.94 years in p53-ve cases. Overexpression of p16 and Mcl-1 were observed in patients with longer survival outcomes (> 2 years). P16 and p21 were overexpressed in the carcinomatous and sarcomatous elements respectively. Cyclin-D1 was focally expressed only in the carcinomatous elements.</p> <p>Conclusions</p> <p>Our study supports that a) cell cycle and apoptotic regulatory protein dysregulation is an important pathway for tumorigenesis and b) p53 is an important immunoprognostic marker in MMMT of the uterus.</p

    HCV genome-wide genetic analyses in context of disease progression and hepatocellular carcinoma

    Get PDF
    <div><p>Hepatitis C virus (HCV) is a major cause of hepatitis and hepatocellular carcinoma (HCC) world-wide. Most HCV patients have relatively stable disease, but approximately 25% have progressive disease that often terminates in liver failure or HCC. HCV is highly variable genetically, with seven genotypes and multiple subtypes per genotype. This variation affects HCV’s sensitivity to antiviral therapy and has been implicated to contribute to differences in disease. We sequenced the complete viral coding capacity for 107 HCV genotype 1 isolates to determine whether genetic variation between independent HCV isolates is associated with the rate of disease progression or development of HCC. Consensus sequences were determined by sequencing RT-PCR products from serum or plasma. Positions of amino acid conservation, amino acid diversity patterns, selection pressures, and genome-wide patterns of amino acid covariance were assessed in context of the clinical phenotypes. A few positions were found where the amino acid distributions or degree of positive selection differed between in the HCC and cirrhotic sequences. All other assessments of viral genetic variation and HCC failed to yield significant associations. Sequences from patients with slow disease progression were under a greater degree of positive selection than sequences from rapid progressors, but all other analyses comparing HCV from rapid and slow disease progressors were statistically insignificant. The failure to observe distinct sequence differences associated with disease progression or HCC employing methods that previously revealed strong associations with the outcome of interferon α-based therapy implies that variable ability of HCV to modulate interferon responses is not a dominant cause for differential pathology among HCV patients. This lack of significant associations also implies that host and/or environmental factors are the major causes of differential disease presentation in HCV patients.</p></div

    Vitamin D supplementation for the prevention of type 2 diabetes in overweight adults: study protocol for a randomized controlled trial

    Get PDF
    Despite Australia's sunny climate, low vitamin D levels are increasingly prevalent. Sun exposure is limited by long working hours, an increase in time spent indoors, and sun protection practices, and there is limited dietary vitamin D fortification. While the importance of vitamin D for bone mineralization is well known, its role as a protective agent against chronic diseases, such as type 2 diabetes and cardiovascular disease, is less understood. Observational and limited intervention studies suggest that vitamin D might improve insulin sensitivity and secretion, mainly via its anti-inflammatory properties, thereby decreasing the risk of development and progression of type 2 diabetes. The primary aim of this trial is to investigate whether improved plasma concentrations of 25-hydroxyvitamin D (25(OH)D), obtained through vitamin D supplementation, will increase insulin sensitivity and insulin secretion. A secondary aim is to determine whether these relationships are mediated by a reduction in underlying subclinical inflammation associated with obesity.Fifty overweight but otherwise healthy nondiabetic adults between 18 and 60 years old, with low vitamin D levels (25(OH)D < 50 nmol/l), will be randomly assigned to intervention or placebo. At baseline, participants will undergo a medical review and anthropometric measurements, including dual X-ray absorptiometry, an intravenous glucose tolerance test, muscle and fat biopsies, a hyperinsulinemic euglycemic clamp, and questionnaires assessing diet, physical activity, sun exposure, back and knee pain, and depression. The intervention group will receive a first dose of 100,000 IU followed by 4,000 IU vitamin D (cholecalciferol) daily, while the placebo group will receive apparently identical capsules, both for a period of 16 weeks. All measurements will be repeated at follow-up, with the primary outcome measure expressed as a change from baseline in insulin sensitivity and secretion for the intervention group compared with the placebo group. Secondary outcome measures will compare changes in anthropometry, cardiovascular risk factors, and inflammatory markers.The trial will provide much needed clinical evidence on the impact of vitamin D supplementation on insulin resistance and secretion and its underlying mechanisms, which are relevant for the prevention and management of type 2 diabetes.Clinicaltrials.gov ID: NCT02112721 .Barbora de Courten, Aya Mousa, Negar Naderpoor, Helena Teede, Maximilian P J de Courten and Robert Scrag

    Disease recurrence in paediatric renal transplantation

    Get PDF
    Renal transplantation (Tx) is the treatment of choice for end-stage renal disease. The incidence of acute rejection after renal Tx has decreased because of improving early immunosuppression, but the risk of disease recurrence (DR) is becoming relatively high, with a greater prevalence in children than in adults, thereby increasing patient morbidity, graft loss (GL) and, sometimes, mortality rate. The current overall graft loss to DR is 7–8%, mainly due to primary glomerulonephritis (70–80%) and inherited metabolic diseases. The more typical presentation is a recurrence of the full disease, either with a high risk of GL (focal and segmental glomerulosclerosis 14–50% DR, 40–60% GL; atypical haemolytic uraemic syndrome 20–80% DR, 10–83% GL; membranoproliferative glomerulonephritis 30–100% DR, 17–61% GL; membranous nephropathy ∼30% DR, ∼50% GL; lipoprotein glomerulopathy ∼100% DR and GL; primary hyperoxaluria type 1 80–100% DR and GL) or with a low risk of GL [immunoglobulin (Ig)A nephropathy 36–60% DR, 7–10% GL; systemic lupus erythematosus 0–30% DR, 0–5% GL; anti-neutrophilic cytoplasmic antibody (ANCA)-associated glomerulonephritis]. Recurrence may also occur with a delayed risk of GL, such as insulin-dependent diabetes mellitus, sickle cell disease, endemic nephropathy, and sarcoidosis. In other primary diseases, the post-Tx course may be complicated by specific events that are different from overt recurrence: proteinuria or cancer in some genetic forms of nephrotic syndrome, anti-glomerular basement membrane antibodies-associated glomerulonephritis (Alport syndrome, Goodpasture syndrome), and graft involvement as a consequence of lower urinary tract abnormality or human immunodeficiency virus (HIV) nephropathy. Some other post-Tx conditions may mimic recurrence, such as de novo membranous glomerulonephritis, IgA nephropathy, microangiopathy, or isolated specific deposits (cystinosis, Fabry disease). Adequate strategies should therefore be added to kidney Tx, such as donor selection, associated liver Tx, plasmatherapy, specific immunosuppression protocols. In such conditions, very few patients may be excluded from kidney Tx only because of a major risk of DR and repeated GL. In the near future the issue of DR after kidney Tx may benefit from alternatives to organ Tx, such as recombinant proteins, specific monoclonal antibodies, cell/gene therapy, and chaperone molecules
    corecore