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ABSTRACT 

We analyzed 17 traits in 85,523 participants from 14 large epidemiologic studies within the XC- 

Pleiotropy Consortium. Individuals classified with metabolic syndrome (MetS, NCEP 

definition), versus those without, showed on average statistically significant different levels for 

most inflammatory markers studied. Average correlations estimated with two methods, and 

factor analyses on large simulated data assisted in identifying 8 choice trait combinations for 

follow-up meta-analyses. Nine correlated meta-analyses using full published genetic results 

(predominantly of large consortia) for 8 metabolic traits and 6 inflammatory markers, yielded 

130 unique SNPs / genes with pleiotropic effects (a gene affecting at least a metabolic trait and 

an inflammatory marker). Twenty-five genes (two-third new) are proposed as MetS candidates. 

Pleiotropic effects identified add to the understanding of MetS and the correlated architecture of 

its risk factors.  

mailto:jmeigs@partners.org
mailto:iborecki@wustl.edu
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INTRODUCTION 

Metabolic syndrome (MetS) is a cluster of increased adiposity/ obesity, atherogenic dyslipidemia 

with high triglyceride and reduced levels of high density lipoprotein cholesterol, hyperglycemia 

and systemic insulin resistance, and high blood pressure 1. MetS has become a health and 

financial burden 2-7. MetS captures a confluence of clinical disorders, assisting front-line 

practitioner in identifying risk factors requiring simultaneously clinical attention 1,8.  

 

There are differing opinions of the genetic etiology of MetS and later outcomes, including 

whether the MetS risk factors are independent in origin. At the phenotypic level, it has been 

reasoned that the cardiovascular disease (CVD) risk associated with MetS appears to be no 

greater than the sum of its single traits’ risk 9. Dallmeier et al. 10 suggested that the relationship 

between MetS and inflammation is largely accounted for by MetS components, once the 

regression model is adjusted with MetS components as continuous traits, suggesting that MetS as 

a construct generally is no more than the sum of its parts with respect to inflammation. 

Henneman et al (2008) 11 recommended the genetic dissection of MetS be approached by 

researching individual components, because of their high heritability.  

 

We advocate that parallel with several genes influencing single MetS risk factors, there are 

biologically relevant genetic variants that influence MetS and inflammatory biomarkers, forming 

a larger intertwined network. MetS is associated with at least five fold increased risk in 

developing diabetes mellitus (T2D) and two fold increased heart disease risk 5. Individuals with 

MetS, often have increased levels of C-reactive protein, white blood cell count, coagulation 

factors VII-IX, von Willebrand factor and plasminogen activator inhibitor 1 as well as decreased 

levels of adiponectin 12-16. It has been suggested that modified cytokine expression correlated 

with an increased adipose tissue may be a mechanism for the inflammation influencing lipid and 

glucose metabolism, as well as blood pressure 12,17,18. Currently, it remains unclear whether 

genetic variants identified for individual metabolic traits 19-23 and inflammatory biomarkers 24-28, 

have pleiotropic effects, thereby influencing the correlated architecture of these traits. As part of 

the “Pleiotropy among Metabolic traits and Inflammatory-prothrombotic biomarkers” working 

group (PMI-WG), a sub-group of the Cross Consortia Pleiotropy (XC-Pleiotropy) Consortium, 

we aimed to: 1) assess relations among MetS and inflammatory markers; 2) isolate promising 

trait combinations, by evaluating correlations among metabolic traits and inflammatory markers, 

for evaluating the role of pleiotropy in MetS etiology; 3) utilize trait-choice-combinations of the 

2-nd objective to perform meta-analyses of several large meta-GWAS-trait consortia and studies 

published full results (already archived in the XC-Pleiotropy repository), for identifying MetS 

candidates with potential pleiotropic effects on metabolic traits and inflammatory markers.  

 

RESULTS 

1. Association of inflammatory markers with MetS  

 

We studied the association at the phenotypic level between 9 inflammatory biomarkers (C-

reactive protein (CRP), fibrinogen (FIB), plasminogen activator inhibitor 1 (PAI-1), interleukin 

6 (IL-6), interleukin 10 (IL-10), intercelular adhesion molecule 1 (ICAM-1), white blood cell 

counts (WBCC), tumor necrosis factor alpha (TNFA) and adiponectin (ADIP)) and 8 MetS risk 

factors (body mass index (BMI), waist circumference (WAIST), high density lipoprotein 

cholesterol (HDLC), triglycerides (TG), fasting glucose (GLUC), fasting insulin (INS), systolic 
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(SBP) and diastolic blood pressure (DBP) (Supplemental Table 1). The mean age in 14 cohorts 

(Table 1.a) with a total of 85,523 participants, varied from 25 (SD=+/-3) years in CARDIA to 74 

(SD=+/-8) years in the Rotterdam Study. These studies capture a large variability of the human 

population, from 2.4% MetS prevalence in CARDIA-EA to 58.9% in GENOA-EA. The 

prevalence of MetS and its components, as well as the mean levels of inflammatory biomarkers 

in individuals with and without MetS, are summarized in Figure 1 for the Family Heart Study 

(FamHS) and the Framingham Heart Study (FHS) and summarized for all studies in the 

Supplemental Figures 1 (a-g). Overall, when comparing mean levels of inflammatory biomarkers 

after stratifying for individuals with MetS versus those without, the mean levels of biomarkers 

were significantly different (passing Bonferroni threshold, p ≤ 9.43e-04) between the two strata 

in 85% (45 out of 53) of comparisons. FIB, CRP, PAI-1, ICAM-1, WBCC and TNFA mean 

levels were elevated, whereas ADIP mean level was lower in individuals with MetS. There were 

also exceptions such as IL-10 (present only in one study), which did not show significant mean 

differences between individuals with and without MetS. 

 

2. Correlations among metabolic traits and inflammatory markers 

Of interest were the correlations of traits at single studies. Their generalization to a global 

average correlation matrix can help in inferring combinations of metabolic traits and biomarkers 

to be used for better understanding pleiotropy in the underlying MetS etiology. First, simulations 

performed mimicked the correlation substructure of individual studies (Methods.3). The average 

correlations estimated from 100 replications of the first batch of simulations with 85,523 

individuals per replication are presented in Table 3. Second, using Fisher’s Z-transformation 

(Methods.3) produced the average correlation coefficients from 14 cohorts (Supplemental Table 

2). The average correlations resulting from the two methods are very similar. Based on p-values, 

significant correlations between biomarkers and metabolic traits were (1) FIB and CRP with the 

metabolic traits studied; (2) ICAM-1 and TNFA with HDLC and TG; and (3) ADIP and WBCC 

with WAIST, HDLC, TG and INS (Supplemental Table 2). 

 

Additionally, the application of factor analysis (Methods.4) on a second batch of simulated data, 

(with average correlation structure of all studies and no missing observations), yielded useful 

trait clusters. Clusters produced (Supplemental Figure 2) were: Factor 1 representing a 

combination of (4) BMI, WAIST, INS, CRP, PAI-1 and weaker contributions of HDLC and TG; 

(5) weak contributions of BMI and WAIST were associated in Factor 2 together with stronger 

contributions of FIB, CRP, IL-6 and WBCC; (6) TG and less so HDLC, contributed along with 

CRP and WBCC in Factor 4; (7) HDLC and TG with PAI1 and ADIP in factor 5, and (8) GLUC 

and INS contributed in Factor 6 along with the contribution of PAI-1. Supplemental Table 3 

shows results of the coefficients of congruence (CC - formula provided in Methods.4). Similarity 

of factor 1 from all replications was high (CC=0.99) and less in factor 4. Factor 3 had only 

contributions from blood pressure and no noteworthy contributions of inflammatory markers and 

thus was not considered in the correlated meta-analyses. As a result, eight trait clusters were 

selected for meta-analyses. 

 

3. Correlated meta-analyses 

We performed nine correlated meta-analyses (the eight trait-combinations predicted in Results.2, 

and one including all variables), utilizing full results from mainly large meta-GWAS consortia 

(Table 1.b) for 8 metabolic traits (BMI 22, WAIST 29, HDLC and TG 23, GLUC and INS 19, SBP 
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and DBP 21), and 6 inflammatory markers (CRP 24, PAI-1 25, ICAM-1 27, WBCC 26, ADIP 30 and 

IL-6 31). A filter for our meta-analyses results of -log10p ≥ 8 and at least one metabolic trait and 

at least one inflammatory marker results with -log10p ≥ 3 was applied. After selecting one best 

SNP per gene, (either a polymorphism within a gene or intergenic SNP assigned to the closest 

proxy gene), the results were reduced to 130 unique SNPs and genes (Supplemental Table 4). Of 

them, 25 genes were selected as candidates for MetS (with associations to at least two metabolic 

traits from our analyses or GWAS literature and at least one association with inflammatory 

markers). They may represent 15 loci with pleiotropic effects to MetS and facilitating 

inflammation. A short description of known functions of 25 genes is provided in Box 1. A 

summary of our work is shown in Table 2. Additional evidence for 25 genes is condensed in Box 

2, in Supplemental Table 5 and in Figure 2 (including regulatory evidence of ENCODE, by 

utilizing the HaploReg 32 and regulomeDB 33 software). 

 

As shown in Figure 2, we identified three groups of genes for their pleiotropic effects. With a 

black triangle annotated are the ones with pleiotropic effects for lipids and inflammation. In 

this group were genes, MACF1 34 35 and ~240K bps distant KIAA0754 on chromosome 1, both 

significantly associated with HDLC and less with WAIST, TG, GLUC and CRP. On 

chromosome 2, a rich strand (~1.2M bps in length) of 23 contiguous genes, from TCF23 to BRE 

was associated with TG and CRP. Although several genes are important in this small 

chromosomal region, we call this region the GCKR region, because rs1260326 represents a 

missense change (from CTG (LEU) to CCG (PRO)) highly significant in association with TG 23 

and CRP 24. Another independent group of genes on chromosome 2 were: GRB14 and COBLL1. 

They are positioned about 4.7K bps apart, both were associated with HDLC, TG, less so with 

PAI-1 and more so with ADIP. An uncharacterized gene LOC646736, which is distant from the 

above two, is located ~528K bps from the IRS1 gene. Near LOC646736 (~23K bps), our meta-

results showed associations with HDLC, TG and less so with ADIP. Intron variants of BAZ1B, 

BCL7B, TBL2 and MLXIPL (7q11.23) were associated significantly with TG, and demonstrated 

good associations with HDLC and CRP. LPL (8p22) was associated significantly with HDLC 

and TG and less with CRP. TOMM40 (19q13) showed similar patterns. More associations were 

observed for rs10808546 about 45K near TRIB1 (8q24.13), which was significantly associated 

with TG and HDLC 23, less so with ADIP, and less so with PAI-1. ZNF664 (12q24.31) 

associated with TG, HDLC and ADIP.  

 

In Figure 2, with a blue square were annotated genes with pleiotropic effects for adiposity / 

obesity and inflammation. In this group participated TFAP2B (6p12), which significantly 

associated with BMI and WAIST and less with CRP; HECTD4 (12q24.13) and PTPN11 

(12q24) were associated significantly with ICAM-1 and less with DBP, SBP, HDLC, BMI and 

WAIST, while FTO (16q12.2) was significantly associated with BMI, WAIST, less so with 

CRP, and less with INS. 

 

The third group of genes, depicted in Figure 2 with green diamond shapes, showed pleiotropic 

effects for adiposity / obesity, lipids and inflammation. Among them were SLC39A8 (4q22-

q24), with the selected missense variant rs13107325 from our meta-analysis, which associated 

significantly with HDLC 23, less so with BMI, and less so with ADIP, SBP, DBP and WAIST. 

The same SNP was associated with blood pressure, hypertension (HTN) 36, and BMI 22. An 

interesting group of genes with significant associations with TG and lower associations with 
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BMI, WAIST, SBP, PAI-1 and WBCC were NELFE, SKIV2L and STK19 (6p21). They 

position in the class III region of the major histocompatibility complex of chromosome 6, close 

to C2 gene, the last one was also included in our 130- candidate gene’ list. PDXDC1 (16p13.11) 

was associated significantly with ADIP and less so with WAIST and TG. Finally, MC4R 

(18q22) was associated significantly with BMI, WAIST, less so with CRP and less with HDLC 

and TG. 

 

4. Bioinformatics analyses 

The overlap of genes with effects on metabolic traits and inflammatory biomarkers suggests 

prior literature evidence of pleiotropy. First, the keyword searches (Methods.6) using Gene 

Entrez of NCBI produced a list of 770 genes that had a relationship with at least one of the eight 

metabolic traits and at least one of the nine biomarkers. Of them, 48 putative pleiotropic genes 

showed at least a total of 8 relations with metabolic traits and biomarkers, sourced from three 

species: human, mouse and / or rat (Supplemental Table 6). Highest ranked for possible 

pleiotropic effects were the ADIPQ, PPARG and LEP genes. Of this list, only four of them 

(APOE, FTO, MMP9 and VEGFA) match with our 130 pleiotropic gene list (Supplemental Table 

4). 

 

A second source of pleiotropic candidate genes was selected from the literature of previous 

GWAS (Supplemental Table 7). Eleven genes in this list showed one association with selected 

biomarkers, but up to four associations with metabolic traits. Among them, GCKR was 

associated with four metabolic traits and CRP, while TRIB1 and TOMM40 were associated with 

HDLC, TG and one biomarker ADIP and CRP, respectively. With the exception of CSMD1, ten 

genes (GCKR, IRS1, LYPLAL1, TRIB1, APOE, TOMM40, PPP1R3B, PEPD, BCL7B, TMEM18) 

are present in the list of 130 pleiotropic candidate genes of metabolic traits and inflammatory 

markers. 

 

A third source of pleiotropic candidate genes was the gene search for “metabolic syndrome” via 

dbGaP Association Results Browser, which includes findings of www.genome.gov from large 

GWAS in humans. This search yielded 30 MetS candidate genes (Supplemental Table 8). Of 

them, GCKR, C2orf16, ZNF512, TFAP2B, MLXIPL, LPL, TRIB1, MTNR1B, FTO, TOMM40, 

33% of MetS list represented 7.7% of our 130’ genes pleiotropic list, and GCKR, TFAP2B, LPL, 

TRIB1, FTO, TOMM40 20% of MetS list represented 24% of genes from our 25 MetS candidates 

(Table 2).  

 

The bioinformatics of our 25 MetS candidate genes shows that only a few contribute to the 

GeneGO Canonical pathway maps. PTPN11 and GRB14 are up-regulated, part of the 

“Development Angiopoietin Tie2 signaling” (enrichment p= 2.4E-04), conveying anti-

inflammatory action. PTPN11 is part of six other maps, while LPL is part of three maps. 

GeneGO enrichment analysis ranked as the top diseases “Metabolic Syndrome” (p= 9.0E-07); 

“Obesity” (p= 8.5E-07); and “Insulin Resistance” (p= 5.6E-07). From our list, some of the genes 

also have been studied for pharmacologic applications. LPL is a therapeutic drug target for 

Ibrolipim (activation) and Gemfibrozil (activation), while MC4R is a target for Bremelanotide 

(activation) and PTPN11 is a target for Stibogluconate (inhibition).  

 

http://www.genome.gov/
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GeneGO database conveyed an understanding for the 130 candidate pleiotropic genes also. The 

pathway map of “ZNF202 role in gene expression in atherosclerosis”, was enriched for genes 

affecting lipid metabolism (p=7.0E-08), while less significant p-values were for other pathways. 

For process networks, the most common were those about inflammation. Because HLA genes 

are quite dominant in these pathways, removal of 7 genes, whose names started with HLA, 

produced a list of 123 pleiotropic candidate genes. The pathway maps remained similar as above, 

however process networks changed to “Complement system” (Inflammation, p= 5.7E-04), and 

“Blood vessel morphogenesis” (Development, p= 1.2E-03). For the disease classification, 

GeneGO reports the top ranking diseases as “Metabolic Syndrome” (p= 1.2E12, TRIP8, BMAL1, 

GCKR, C2orf16, LPL, MMP-9, HNF4-alpha, NTPBP, APOE, TRIPs, TFAP2A, ZNF512, VEGF-

A, AP-2B, MC4R, Notch, RGPR, Galpha(s)-specific peptide GPCRs, FTO, HNF4, CCDC121), 

Obesity (p= 6.1E-11), “Coronary disease” (p= 1.6E-08), “Macular degeneration” (p= 3.7E-08) 

and T2D (p= 7.5E-08). In the GO processes ranked at the top were “Glucose homeostasis” (p= 

3.0E-09, “Positive regulation of vascular permeability” (p= 8.8E-09) and “Regulation of insulin 

secretion” (p= 4.0E-07). 

 

Using the Literature Lab software from ACUMENTA for an automated literature interrogation 
37, the same list of 25 genes showed association, compared against 1000 random sets of genes, 

for overnutrition (p=0.0039), obesity (p=0.0041), nutrition disorders (p=0.0053), heart valve 

diseases (p=0.0112), and fatty liver (p=0.0124). The contributing genes in these disease-MeSH 

term clusters, ranked by the number of the corresponding publications, were for overnutrition: 

MC4R (46.3%), FTO (42.38%), LPL (10.39%) and MLXIPL (0.62%); similar genes were in 

ranking order for obesity and nutrition disorders; for heart valve diseases BAZ1B (47.02%), 

PTPN11 (37.50%), TBL2 (7.73%), and BCL7B (6.63%); and for fatty liver MLXIPL (89.50%), 

LPL (8.02%) and GCKR (1.82%).  

 

DISCUSSION 

This is the first time that a large sample of 85,523 participants with 8 metabolic traits and 9 

inflammatory markers are analyzed together for understanding relationships of inflammatory 

markers and MetS. We are statistically confident that inflammatory markers FIB, CRP, PAI-1, 

ICAM-1, WBCC and TNFA have elevated mean levels, while ADIP has a lower mean level in 

individuals with MetS compared to those without. Such findings may hint for presence of 

pleiotropy. For studying pleiotropy we explored the average correlations of 17 traits generated 

from 14 cohorts. Correlation estimations and factor analyses yielded eight choice trait-

combinations out of 130,305 possible combinations between metabolic traits and inflammatory 

markers, which we hoped would reflect some latent genetic correlation. During this analytical 

process we demonstrated also that large data (100 replications of simulations with 85,523 

participants each) produces an average correlation matrix similar to the one estimated with 

Fisher’s method. 

 

This is also the first time that 8 metabolic traits and 6 inflammatory markers from mainly largest 

meta-GWAS are studied in a correlated meta-analyses for inferring pleiotropic variants with 

effects on MetS. The analysis yielded 130 top ranked genes with putative pleiotropic effects 

between metabolic traits and inflammatory markers. Twenty-five genes, each represented by a 

common variant with pleiotropic effects, were considered as contributors to MetS. In principle, 

genetic makeup and environment enable differences in developing MetS, whereas total burden is 
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related to how many and direction, of disease predisposing alleles one carries. However, 

pleiotropy is more than counting alleles. Thus, we considered MetS candidate genes to be the 

ones that were in significant association with 2 or more components (from our study and GWAS 

literature), and have an expected pleiotropic effect in the low grade development of 

inflammation.  

 

Then what does pleiotropy represent at the gene level? Here we focus on a not well known 

cluster. At first glance, genes BAZ1B, BCL7B, TBL2 and MLXIPL, show pleiotropy by affecting 

similarly TG, HDLC and CRP.  A few SNPs of BAZ1B were associated with TG 38, protein C 39, 

and serum urate concentration 40. BCL7B’s SNPs associated with CRP 24 and with gamma-

Glutamyltransferase 41. TBL2 associated with TG 23,42,43 and with HDLC 23. MLXIPL was 

associated significantly with very low density lipoprotein (VLDL) 44, with MetS 45, with TG 46, 

and with gamma-Glutamyltransferase 47 (Box 2 and Supplemental Table 5). Deletions of these 

contiguous genes at 7q11.23 have been identified as causing a Williams-Beuren syndrome, a 

multisystem developmental disorder, where 75% of cases show severe GLUC intolerance 48. 

BAZ1B and MLXIPL may serve as transcription factors. The intron rs17145750 of MLXIPL, 

based on regulomeDB shows some minimal regulatory signature, and from HaploReg affects a 

PPAR motif. The rest of selected SNPs have also some minimal regulatory properties. A large 

part of SNPs in these genes are under two linkage disequilibrium blocks (HapMap figure not 

shown), that overlap with each other. It has been shown that MLXIPL protein forms a 

heterodimeric complex and activates, in a glucose-dependent manner, carbohydrate response 

element (ChoRE) motifs in the promoters of triglyceride synthesis genes. Recently, Herman et 

al. 49 showed in mice that GLUT4, officially known as SLC2A4 (known to be used by insulin for 

stimulating glucose uptake), regulates the expression of MLXIPL. A number of papers with work 

in mice have proposed MLXIPL as another regulator of systemic glucose metabolism, such that it 

plays a critical role in converting excess carbohydrates to TG by way of de novo lipogenesis 

(DNL) 48,50,51. Donnelly et al. 52 studied 9 non-alcoholic fatty liver disease participants (with 

excess liver TG) and showed that about 26% of TG in the liver was result of  DNL, 59% from 

serum nonesterified fatty acids, 15% from diet, and a similar pattern of isotope labelling in 

VLDL, concluding that DNL contributes to the accumulation of hepatic fat. Jeong et al. 53, 

studying expression of MLXIPL using ChIP-seq, identified 14 genes as direct targets that affect 

the paths from GLUC to TG. They also proposed that MLXIPL is an activator and repressor 

based on gene expression patterns of target genes. The role of MLXIPL in controlling glucose 

and lipid homeostasis is complex, because in C57BL/6 mice, global deficiency of MLXIPL leads 

to insulin resistance 50, while in obese mouse with ob/ob background (leptin deficiency) 50 leads 

to improved hepatic steatosis and improved insulin resistance. Moreover, Benhamed at al. 48 

proposed that MLXIPL in the mouse liver raises beneficial lipid species. Thus, the pleiotropic 

effects of MLXIPL are more than what they appears in our association tests. 

 

Our findings are supported with additional GWAS results for several genes of three major 

pleiotropic groups presented in Figure 2. A comprehensive GWAS and functional evidence is 

reported in Box 1, Box 2 and Supplemental Table 5 as evidence about our findings grouped by a) 

pleiotropic genes for lipids and inflammation, b) for adiposity / obesity and inflammation, and c) 

for lipids, adiposity / obesity and inflammation 11,23,30,41,45-47,54-104. The simple reason that we 

amass such information, is that our meta-results are the contemporary world’s largest studies 

available. Hence, it is very difficult to find other similar samples as replications for most of the 
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traits studied, with exception of IL-6, which had the largest SNPs sample (~5M), but smallest 

individuals’ sample in our meta-analyses (n=707). Previous studies have shown that MetS 

pillars, (excess abdominal fat obesity, atherogenic dyslipidemia, hyperglycemia and insulin 

resistance, high BP, and a proinflammatory and prothrombotic state 1) can be modified by genes 

that affect MetS components individually. That might explain important contributions in 

developing MetS 10,45. However, we show that pleiotropic genes also play a role in MetS. Two-

third of our 25 MetS pleiotropic candidates are new, compared to 30 MetS candidates’ list 

(Supplemental Table 8). These findings, (graphically summarized in Figure 2), reinforce the 

importance of inflammatory markers in the etiology of MetS and that pleiotropy can additionally 

contribute in clustering MetS pillars.  

 

Kristiansson et al. 45 recently confirmed that 22 previously identified susceptibility loci for 

individual MetS risk factors replicated in their GWA and factor analysis. Most of them 

associated with lipid phenotypes and none with two or more uncorrelated MetS components, but 

they did not find evidence of pleiotropy of these genes with obesity. Although their findings are 

right in principle, our study based on very large GWAS meta-analyses indicates, that there are 

also exceptions. For example, MC4R (rs6567160) showed highly significant associations with 

WAIST, BMI, HDLC and less so with TG and CRP; NELFE (rs419788), SKIV2L (rs437179), 

STK19 (rs389883) were associated strongly with TG, less so with WAIST, SBP, PAI-1, WBCC, 

and less with BMI; SLC39A8 (rs13107325) was associated significantly with HDLC and less so 

with BMI, WAIST, SBP, DBP and ADIP; MACF1 (rs1537817) was associated significantly with 

HDLC and less so with CRP, TG, WAIST, and GLUC. 

 

It is interesting to note that in the 130 pleiotropic candidates (Supplemental Table 4), a number 

of genes are associated noticeably with ADIP and HDLC. Ye and Scherer 105 summarized 

pleiotropic effects of ADIP by reviewing either recombinant adiponectin protein, or 

endogenously its overproduction. In adipose tissue, ADIP lowers inflammation and increases 

glucose uptake, fat storage and adipogenesis; in muscle leads to an increase of fatty acid 

oxidation; in heart decreases injury and apoptosis; in endothelium decreases oxidative stress and 

increases angiogenesis and function; in liver increases insulin sensitivity and lowers 

gluconeogenesis and lipogenesis; in microphages increases insulin sensitivity and lowers 

inflammation. Is it possible specific alleles of genes associated with ADIP may protect from 

disease, because of pleiotropic effects with anti-inflammatory properties? Among our findings 

are rs2785990, ~300K bps from LYPLAL1 (a lysophospholipase like); GRB14, COBLL1, and 

LOC646736; rs9853056 of STAB1 (a scavenger receptor); rs4282054 of NT5DC2; FAM13A, 

SLC39A8 and ARL15; rs998584 near VEGFA, a glycosylated mitogen that mediates increased 

vascular permeability, induces angiogenesis, vasculogenesis and endothelial cell growth, 

promotes cell migration, and inhibits apoptosis; and rs509548 near HCAR2, which is expressed 

in monocytes and macrophages 106. Other candidates for a specific allele with anti-inflammatory 

properties could be, ZNF664 with an unknown function; rs2925979 an intron of CMIP involved 

in T-cells signaling and reported to down regulate NF-kB activity 107; and rs731839 an intron of 

PEPD, gene with a few known roles 108, including elevated activity at the wound site following 

traumatic injury 109, and appears to activate EGFR which would result in cell proliferation 102.  
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In the list of 130 pleiotropic genes, a few special patterns emerged. The rs2943634 on 

chromosome 2 was associated with HDLC, TG and ADIP and resides 23.3K bps from an 

uncharacterized LOC646736 gene and ~528K bps from IRS1. We reported additional evidence 

for its association with coronary disease as well as a number of neighboring SNPs with T2D, TG, 

adiposity, and ADIP. These SNPs closer to LOC646736 gene are not eQTLs of IRS1. It is 

compelling to understand their function toward MetS and relations with IRS1. Co-localization 

might relate with evolutionary functional importance, which is observed in our data for gene 

clusters. For example, a missense SNP (rs1260326, T=0.3963) of GCKR associated with similar 

traits as rs1919127 (C=0.2647) a missense of C2orf16, also as rs23844656 (G=0.2642), an intron 

of ZNF512 and rs13002853 (G=0.2593) a variant of CCDC121; another cluster was for 

DNAH10, CCDC92, and ZNF664 on chromosome 12, and for HNF4A, PLTP, PCIF1, ZNF335 

and MMP9 on chromosome 20. Such clusters reminded of a similar pattern previously published 

on chromosome 11 for APOA5, ZNF259, and BUD13, where a zinc finger probably controls the 

transcription of nearby genes 62. It is possible that neighboring gene-variants produce similar 

results in the associations, because of conserved haplotypes. In the 130 pleiotropic genes, 11 

transcription factors (HEYL, SEC16B, GTF3C2, ZNF512, GTF2H4, TFAP2B, BAZ1B, MLXIPL, 

ZNF664, MED24, HNF4A and ZNF335) represent about 8.5% of the list. Vaquerizas et al. 110 

reported 1,391 high confidence loci that encode transcription factors, about 6% of the total of 

human protein coding genes. Thus the 130-genes’ list shows patterns that might be common for 

function conservation. Another feature learned by comparison of 130 pleiotropic candidate genes 

with the 30 MetS candidate genes (Supplemental Table 8) was that, although APOA5 and its 

cluster, as well as CETP, LIPC, GALNT2 involved in lipid metabolism are considered important 

contributors to MetS, they appear not involved directly in the inflammation process.  

 

Although we ponder the 48 candidates gene list (Supplemental Table 6) as a “soft” one, because 

of its vast research of human, mouse and / or rat considered, the bioinformatics searches 

exhibited that other genes with pleiotropic effects among metabolic traits themselves and also 

with inflammation remain to be discovered. The bioinformatics research provided additional 

information not only in support to our findings, but also to a finer understanding of gene effects 

as is the case of BAZ1B, PTPN11, TBL2, BCL7B for heart valve disease, and MLXIPL, LPL and 

GCKR in relation to fatty liver disease as revealed by Literature Lab. 

 

However, our study has weaknesses also. First, our analyses operate on meta-pvalues, without 

accounting contributing beta-directions at each SNP location of each study, because some studies 

did not share beta-coefficients results. Second, we are utilizing for individual contributing 

metabolic traits and inflammatory markers, thresholds that are lower than genome-wide 

thresholds (-log10p ≥ 3), with the hope to capture “low hanging fruits”, and that filtering relying 

on meta -log10p ≥ 8 will weed out false positives. Third, with association results available it was 

not possible to evaluate mediation, as presented for the rs9939609 of FTO, and BMI on other 

traits by Freathy at al.111 and Fall et al.112. 

 

In conclusion, pleiotropic effects of identified genes add in understanding MetS and its risk 

factors correlation structure. Among genes with pleiotropic effects in our study some of them 

give hope that for specific alleles they may have contributions to protect from MetS, including 

inflammation.  
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ONLINE METHODS 

 

A Brief Summary of Implemented Methods 

The international collaboration of XC-Pleiotropy was founded in early 2011 for studying 

pleiotropy by using published GWAS results. The PMI-WG built a collaborative network within 

the XC-Pleiotropy (Supplement 1), for implementing the first two objectives. Seventeen 

metabolic traits and inflammatory markers are studied (Methods.1), from 14 large-scale cohort 

studies (dependent on cohort-specific assay availability, Table 1.a and Supplement 2). Together 

these data represent a total of 85,523 individuals (Supplemental Table 1). Laboratory methods 

for obtaining these traits are described in Supplement 2. Traits adjustments for medication use 

and other covariates are provided in Methods.2. Methods of estimating correlations with 

simulations and Fisher’s Z-transformation are provided in Methods.3, and factor analysis in 

Methods.4. Each study was approved by its local ethics board and each participant provided 

written, informed consent. 

 

Moreover, we utilize (for implementing the 3d objective) published full results from meta-

GWAS-trait consortia and studies (Table 1.b). With them we performed correlated meta-analyses 
113,114 (Methods.5) for identifying pleiotropic variants for metabolic traits and inflammatory 

markers. In this paper, a gene is considered pleiotropic when affects at least a metabolic trait and 

a biomarker. In this framework, our study includes published results for BMI 22, WAIST 29, 

HDLC and TG 23, fasting GLUC and fasting INS 19, SBP and DBP 21. In addition, our meta-

analyses included inflammatory markers, CRP 24, PAI-1 25, WBCC 26, ADIP 30, ICAM-1 27, 

and IL-6 31. Because IL-10 was not significant in the correlation of traits, and FIB as well as 

TNFA GWAS results were not available, (although analyzed when studying correlations), the 

three last traits are not present in the meta-analyses. The reported allele frequencies were based 

on GIANT BMI. When a SNP was not studied in GIANT BMI, then MAGIC GLUC meta-

analysis allele frequencies were used. We used also bioinformatics approaches for appraising 

pleiotropy (Methods.6). 

 

1. Traits studied 

To evaluate the associations between inflammatory biomarkers and MetS risk factors, seventeen 

traits were studied at the phenotypic level. Metabolic traits included BMI (kg/m2), WAIST (in 

cm), HDLC (mg/dL), fasting (at least 8 hours) TG (mg/dL), fasting INS (mU/L), fasting GLUC 

(mg/dL), SBP and DBP (mm Hg), as average of three seating measures, or the 2-nd and 3-rd 

ones. We use the term “inflammatory biomarkers” for brevity when referring to the 

inflammatory – prothrombotic markers fibrinogen (FIB) (mg/dL), CRP (mg/L), PAI-1 (IU/mL), 

tumor necrosis factor alpha (TNF-alpha) (pg/mL), ICAM-1 (ng/mL), IL-6 (pg/mL), interleukin 

10 (IL-10) (pg/mL), WBCC (10e9/L) and ADIP (μg/mL). The studies had a variable number of 

traits, dependent on the assays performed. The metabolic traits studied belong to domains of 

adiposity/ obesity (BMI, WAIST), lipids (HDLC, TG), glucose metabolism and insulin (GLUC, 

INS), and blood pressure (SBP, DBP). In addition, FIB and PAI-1 represented prothrombotic 

markers, and CRP, IL-6, IL-10, ICAM-1, TNF-alpha, WBCC and ADIP represented markers of 

immune or inflammatory response. In the study of correlations, we sought to find the average 

correlation among all traits for 14 cohorts through simulations and average correlation using 

Fisher’s Z-transformation. The MetS definition, data analyses methods, adjustments for 
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medications use (for blood pressure and lipids medications) and covariates were similar for all 

contributing cohorts and described in Methods.2.   

 

2. MetS definition, variables’ adjustments for medications and other covariates 

A participant was classified with MetS when thresholds were passed for three or more out of five 

traits of the NCEP improved threshold 115: WAIST ≥ 102 cm for men / WAIST ≥ 88 cm for 

women; GLUC ≥ 100 mg/dL; TG ≥ 150 mg/dL; HDLC < 40 mg/dL for men / HDLC < 50 mg/dL 

for women; SBP ≥ 130 mmHg / DBP ≥ 85 mmHg. The MetS was defined based on the improved 

National Cholesterol Education Program 115 using original traits adjusted for medication use only 

(in all cohorts, except for WGHS, which did not measure GLUC), representing (B) set of data 

(see Supplemental Tables 9-22). T2D was defined as following: (GLUC ≥ 126 mg/dL AND age ≥ 

40 years) OR ((using anti-diabetic medications OR insulin) AND diabetes onset age ≥ 40 years).  

 

The average blood pressure was adjusted for individuals using antihypertensive medication(s) as 

follows, SBP = measured SBP + 15 mmHg; and DBP = measured DBP + 10 mmHg 116. For 

individuals using anti-hyperlipidemic medications, their lipid levels were adjusted respectively 

as follows, HDLC = measured HDLC / (1+0.04419); and TG = measured TG / (1-0.17159). For 

lipids, adjusting constants are produced as a summary of Wu et al work 117 and also of our 

additional unpublished summary follow-up, which combined together to a total of 92 clinical 

trials (for HMG-CoA reductase inhibitors, Fibric Acid Derivatives, Cholesterol Absorption 

inhibitor, Nicotinic acid derivatives, Bile sequestrants and Fish oil) including 53,005 participants 

for HDLC and 53,432 participants for TG. All participating studies set to missing GLUC and 

INS values for individuals that were taking insulin or diabetic medications. Before performing 

any analysis, the participating studies made sure that each variable had a normal distribution, or 

transformed them to near normal. For example, a natural log transformation worked well for TG 

in general for all cohorts. In the FamHS, GLUC had a high kurtosis, thus applying a Box-Cox 

power transformation it was found, that 1/ GLUC2 transformation worked well in acquiring a 

near-normal distributed GLUC. As a result, for any bivariate correlations in the FamHS that 

included GLUC, correlations coefficients were multiplied by (-1), because power transformation 

for GLUC reversed the sign compared to original corresponding correlations. As an empirical 

check, when compared to FHS, the GLUC correlations in FamHS were very similar, although a 

transformation of GLUC was implemented in the FamHS. In addition, phenotypes were adjusted 

for polynomial age trend (age and age
2
), sex and important study specific covariates (e.g. field 

center) which were included
 
in the regression model for generating the final data for analysis: 

standardized residuals, i.e. with mean 0 and variance of 1.  

 

In the Supplemental Tables 9-22, we present statistics for individual studies for (A) original 

variables, (B) original variables adjusted only for medication use, and (C) residuals from 

regression with mean 0 and variance 1 of variables obtained from adjusting (B) data for 

additional covariates (as mentioned above within Methods.2). In the correlation statistical 

analyses we use the (C) data. 

 

3. Correlation statistical analysis and simulations 

We grouped participants’ data in strata with- and without MetS (M1 versus M0), for analyzing 

mean differences of inflammatory biomarkers in these two subgroups for each cohort. We used 

(B) data and pooled t-test for testing mean differences between the two: (�̅�1 − �̅�2), with sample 
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sizes 𝑛1 and 𝑛2 via 𝑡 =
(�̅�1−�̅�2)

𝑠𝑝∗√
1

𝑛1
 +

1

𝑛2
 
, where 𝑠𝑝 = √

(𝑛1−1)∗ 𝑠1
2+ (𝑛2−1)∗ 𝑠2

2

𝑛1+𝑛2−2
  is the pooled standard 

deviation and 𝑛1 + 𝑛2 − 2 degrees of freedom. In general, the MetS subgroup sample size was 

smaller than non-MetS one, but the variances between M1 and M0 subgroups were similar. The 

mean differences p-values were tested against a conservative Bonferroni p-threshold for an 

α=0.05 experiment-wise, which corresponded for 53 tests to a p= 9.43e-04. Statistics of MetS, its 

components as well as of biomarkers by cohort are summarized in Figure 1 and Supplemental 

Figures 1, (a-g). The biomarker boxplot graph comparisons were built by using simulations via 

“rnorm” function in R with mean, standard deviation and sample size corresponding to 

subgroups with- and without MetS from the original data.  

The above analysis was followed by correlation analyses (including up to 17 traits), performed 

on (C) data near normally distributed, adjusted for medication use and covariates. All pairwise 

correlations were performed using Pearson correlation procedure (using SAS v. 9.3 or R v. 

2.15.1, presented in Supplemental Tables 9-22). 

We then used two parallel approaches, simulation and Fisher’s Z-transformation, to confirm our 

results, when averaging correlation coefficients of each bivariate trait combination among all 

cohorts. First, simulation processes were implemented to produce the average correlation matrix 

and the final correlated simulated data across all studies (N = 85,523 individuals) based on (C) 

data. Simulation 1 was performed following these steps: using N (largest number of participants 

per study) and variance-covariance matrices (from above single studies) we simulated 

multivariate normal distributions (MVN(0,1)) of dimension (p-variables, N-participants) of each 

study, using an R multivariate normal generating (“mvrnorm”) function of the MASS library 118. 

Since in simulations we used the largest number of participants per study, next, we introduced 

(in random patterns) missing values in traits when they were not available in all participants of a 

specific cohort. Thus, 100 replications of simulated data imitated correlations and sample size of 

the original cohorts. When pooled they formed all studies’ set. These data represented all traits, 

but with corresponding per trait missing values. Correlations of simulated data were evaluated 

via Pearson pairwise correlation, which produced a full variance-covariance matrix, representing 

a simulated approximation of the average correlation matrix of single studies. The covariance 

matrix (correlations among metabolic traits, metabolic traits and biomarkers, and among 

biomarkers) of simulation 1 are presented in Table 2. Simulation 2 (again 100 replications) were 

implemented by using the first simulation’s average variance-covariance matrix, to produce 

multivariate normal (MVN(0,1)) with p = 16 variables and N = 85,523 individuals and no 

missing values. Simulation 2 were built with the purpose of implementing factor analyses on 

them.  

 

Second, we performed Fisher’s Z-transformation for averaging correlations of real (C) data 

(Supplemental Table 2). Assuming that correlations of any two independent bivariate samples 

(𝑟1 and 𝑟2) of 𝑛1 and 𝑛2 sample sizes for the same trait combinations are random samples from a 

larger population, a combined correlation estimate (�̅�) can be computed. Application of the 𝑍 

transformation of the two sample correlations follows: 𝑍1 = 𝑡𝑎𝑛ℎ−1(𝑟1) and 𝑍2 = 𝑡𝑎𝑛ℎ−1(𝑟2), 

where 𝑡𝑎𝑛ℎ is hyperbolic tangent and the Z can be calculated as 𝑍 = 0.5 ln (
1+𝑟

1−𝑟
) = 𝑎𝑟𝑡𝑎𝑛ℎ(𝑟), 

where 𝑎𝑟𝑡𝑎𝑛ℎ is hyperbolic arctangent applied to each correlation coefficient. 

The weighted average �̅� of the corresponding Z values is 
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�̅� =
(𝑛1 − 3)𝑍1 + (𝑛2 − 3)𝑍2

𝑛1 + 𝑛2 − 6
, 

where the weights are inversely proportional to their variances (𝑉(�̅�) = 1/(𝑛1 + 𝑛2 − 6)). Thus, 

a combined correlation estimate is �̅� = tanh (�̅�). We extended averaging correlation coefficients 

for each bivariate trait combination to include up to 14 cohorts’ correlation estimations, by 

writing a SAS macro program that implements Fisher’s Z-transformation averaging via SAS 

MIANALYSE procedure. The IL-10 was dropped from these analyses, because it was present 

only in one study. 

 

4. Factor analysis 

Factor analyses with “Varimax” rotation were performed in SAS, v. 9.3. The purpose of using a 

multivariate statistical analysis was to identify latent clusters of traits that may help in identifying 

MetS and inflammatory markers underlying etiology. “Varimax” rotation creates orthogonal 

clusters of correlated variables. The objective is to maximize the independence of the clusters of 

correlated variables that contribute onto specific factors. An absolute value of a loading 0.4 or 

larger (which represents a correlation of an original variable to a factor when the data are 

standardized) is considered in the scale of correlations as a significant contribution. For 

accounting about stochastic processes in the 100 simulations, 100 factor analyses (p=16, 

N=85,523) with “Varimax” rotation were considered (Supplemental Figure 2). A coefficient of 

congruence was calculated as: (𝐶𝐶 =
∑ 𝑙1𝑙2

𝑛𝑡𝑟𝑎𝑖𝑡𝑠
𝑛=1

√(∑ 𝑙1
2𝑛𝑡𝑟𝑎𝑖𝑡𝑠

𝑛=1 ) (∑ 𝑙2
2𝑛𝑡𝑟𝑎𝑖𝑡𝑠

𝑛=1 )

), where 𝑙1represents loadings of a 

factor in a replication and 𝑙2 represents loadings of a similar factor in another replication and 

𝑛𝑡𝑟𝑎𝑖𝑡𝑠 is the number of traits contributing to a particular factor 119. This similarity coefficient 

was calculated for all similar factors in the 100 replications (respectively 100*99/2=4950 times, 

as an average similarity measure of comparable factor configurations in the simulations 

(Supplemental Table 3).  

 

The average correlations among eight metabolic traits and nine inflammatory biomarkers predict 

to some extent, especially via factor analyses, which are useful trait combinations that may 

reflect underlying MetS etiology, out of 130,305 possible trait combinations.  

 

5. Correlated meta-analysis 

We performed a correlations analysis of 8 metabolic traits and 9 inflammatory markers, as a 

premise in identifying useful combinations that may help in discovering genetic pleiotropy. 

Based on such analysis we had selected 8 trait combinations. This large number of results 

combined requires an unbiased method for meta-analyzing them. When meta-component scans 

are not independent, it can inflate type-I error, since at each location in the genome, a false-

positive finding for one of the scans has an enhanced probability of being a false positive in any 

correlated scan. Province and Province and Borecki 113,114 developed a method for correcting bias 

via a correlated meta-analysis, which only requires the GWAS results and does not need the 

individual genotype / phenotype data. The basic idea is that for a trait of interest, the vast 

majority of the genome is under the null hypothesis of no genotype-phenotype association, which 

is only mildly contaminated with a relatively few SNPs that are under the alternative. Thus, the 

method performs sampling of GWAS genome via the polychoric correlation estimator 120, (using 
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SAS PROC FREQ). It is the estimate of the NxN correlation matrix, 𝛴 between N scans, that is 

used to correct the final meta-estimates for this correlation.   

 

In this article, the meta-analyses were based on p-values combinations, which involved the 

Fisher’s 1925 121 method of combining p-values at each location of the genome 122. This 

technique uses the fact that for N scans, ∑– 2ln (𝑝𝑖) ~𝜒2 with 2n degrees of freedom, so the tail 

probability provides the meta-p-value. Unfortunately, in the case of correlated GWAS, this sum 

is no longer distributed as a simple chi-square. Instead, in the correlated meta-method, Province 

uses an inverse-normal transform, 𝑍𝑖 = 𝜑−1(𝑝𝑖) forming the N dimensional vector Z of all 𝑍𝑖s. 

He then applies the basic theorem of multidimensional statistics that for matrix D, if Z ~ N(0,Σ) 

then D Z ~ N(0,DΣD’). In particular, when D is a 1xN vector of all 1’s, SUM(Z) = D Z ~ 

N(0,SUM(Σ)), whose tail probability gives the meta-Z p-value. In this case, for estimating Σ, the 

SNP p-values are dichotomized across the genome as (P < 0.5; P > 0.5). The software was 

developed in SAS by Province M. A. 113 and an interface was built with SAS/InterNet to perform 

parallel computing of each meta-analysis within the Division of Statistical Genomics, 

Washington University computing cluster.  

 

6. Bioinformatics of selected genes 

Another approach we used for appraising pleiotropy was searching Gene Entrez of NCBI 

(http://www.ncbi.nlm.nih.gov/gene/) for genes related to each of the traits studied: “body mass 

index”, “waist circumference”, “high density lipoprotein cholesterol”, “triglycerides”, “insulin”, 

“glucose”, “systolic blood pressure”, “diastolic blood pressure”, “fibrinogen”, “C-reactive 

protein”, “plasminogen activator 1”, “interleukin 6”, “interleukin 10”, “intercellular adhesion 

molecule 1”, “tumor necrosis factor alpha”, “adiponectin” and “white blood cell counts”. Our 

search was limited only to human, mouse and rat species. Identified genes represent publication 

evidence of their contribution to a trait based on linkage, association, function, expression etc. 

All single traits gene lists were merged by gene name and selected for most contributions among 

metabolic traits and inflammatory biomarkers, selected with a minimum threshold of 8 

contributions between the two of them (Supplemental Table 5).  

 

For the same terms, searches were implemented also at http://www.genome.gov/gwastudies/. 

These data represent large genome wide studies with at least 100,000 SNPs and with a high 

statistical significance in the overall (initial GWAS + replication) population 123. Genes 

identified as possible candidates were checked via Association Results Browser of dbGaP of 

NCBI http://www.ncbi.nlm.nih.gov/projects/gapplusprev/sgap_plus.htm. The same database was 

used to identify genes reported to associate with “metabolic syndrome”. Results are reported in 

Supplemental Tables 5 and 6. The importance of gene lists identified was mined by means of 

GeneGO (http://thomsonreuters.com/products_services/science/systems-biology/) and Literature 

Lab of ACUMENTA (http://acumenta.com/) software. The GeneGO, enrichment analysis 

consists of matching gene IDs of possible targets for the "common", "similar" and "unique" sets 

with gene IDs in functional ontologies in MetaCore, MetaDrug, MetaBase, Specialty modules, 

and System toxicology. The probability of a random intersection between a set of IDs the size of 

target list with ontology entities is estimated in p-value of hypergeometric intersection. The 

lower p-value means higher relevance of the entity to the dataset, which shows in higher rating 

for the entity. Literature Lab on the other hand, is an interface between experimentally-derived 

gene lists and scientific literature in a curated vocabulary of 24,000 biological and biochemical 

http://www.ncbi.nlm.nih.gov/gene/
http://www.genome.gov/gwastudies/
http://www.ncbi.nlm.nih.gov/projects/gapplusprev/sgap_plus.htm
http://thomsonreuters.com/products_services/science/systems-biology/
http://acumenta.com/
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terms. It employs statistical and clustering analysis on over 14 million PubMed abstracts 

(01/01/90 to the present) to identify pathways (809 pathways), diseases, compounds, cell biology 

and other areas of biology and biochemistry. The analysis engine compares statistically the 

submitted gene set to 1,000 random gene sets generated on-the-fly to identify term relationships 

that are associated with the gene set more than by chance alone.  
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Box 1. A summary of 25 MetS candidate genes functions. 

 

 

No* Gene Location Function (References)

Annotating

Marker

Allele 

(Frequency)

1 MACF1 1p32-p31

"Microtubule-actin crosslinking factor 1"; Produces a protein that forms bridges between different cytoskeletal elements, by stabilizing and 

guiding microtubule growth along actin filaments. An alternative spliced form associates with the Golgi apparatus  (35,36). rs1537817 T (0.2156)

2 KIAA0754 1p34.3 An uncharacterized gene. rs3768302 G (0.2859)

3 GCKR 2p23

"Glucokinase (hexokinase 4) regulator"; GCKR’s protein is a regulatory protein that inhibits glucokinase in liver and pancreatic islet cells by 

binding non-covalently to form an inactive complex with the enzyme. rs1260326 T (0.3963)

4 GRB14 2q22-q24 "Growth factor receptor-bound protein 14”, which likely produces an inhibitory effect on insulin receptor signaling, rs10184004 T (0.4214)

5 COBLL1 2q24.3 “Cordon bleu”; a conserved gene involved in neural tube formation (54) rs10195252 C (0.4205)

6 LOC646736 2q36.3 An uncharacterized gene. rs2943634 A (0.3428)

12 BAZ1B 7q11.23

"Bromodomain adjacent to zinc finger domain, 1B"; The bromodomain is a structural motif characteristic of proteins involved in chromatin-

dependent regulation of transcription. This gene is deleted in Williams-Beuren syndrome. rs7811265 G (0.191)

13 BCL7B 7q11.23

"B-cell CLL/lymphoma 7B"; This gene is located at a chromosomal region commonly deleted in Williams syndrome. This gene is highly 

conserved from C. elegans to human. rs13233571 T (0.1209)

14 TBL2 7q11.23

"Beta-transducin like 2";  involved in regulatory functions. This protein is possibly involved in some intracellular signaling pathway. This 

gene is deleted in Williams-Beuren syndrome. rs11974409 G (0.1906)

15 MLXIPL 7q11.23

"Helix-loop-helix leucine zipper transcription factor of the Myc/Max/Mad superfamily"; This protein forms a heterodimeric complex and 

binds and activates, in a glucose-dependent manner, carbohydrate response element (ChoRE) motifs in the promoters of triglyceride synthesis 

genes. The gene is deleted in Williams-Beuren syndrome. rs17145750 T (0.1496)

16 LPL 8p22

"Lipoprotein lipase"; is expressed in heart, muscle and adipose tissues. Its main functions are the hydrolysis of triglycerides of circulating 

chylomicrons and very low density lipoproteins, and to serve as a ligand or bridging factor for receptor-mediated lipoprotein uptake. 

The apolipoprotein APOC2, acts as a coactivator of LPL in the presence of lipids on the luminal surface of vascular endothelium, whereas 

ANGPTL4 expression in adipose tissue as induced by fasting is proposed as an inhibitor of LPL in adipose tissue to reroute fat from adipose 

tissue to other tissues (76) rs3289 C (0.028)

17 TRIB1 8q24.13 "Tribbles pseudokinase 1"; rs10808546 T (0.4425)

21 ZNF664 12q24.31 "Zinc finger protein 664"; rs12310367 G (0.3367)

25 TOMM40 19q13

"Translocase of outer mitochondrial membrane 40 homolog (yeast)"; channel-forming subunit of the translocase of the mitochondrial outer 

membrane (TOM) complex that is essential for protein import into mitochondria. rs2075650 G (0.1533)

11 TFAP2B 6p12 " Transcription factor AP-2 beta"; TFAP2B  is a transcription factor that stimulates cell proliferation. rs3857599 A (0.1734)

19 HECTD4 12q24.13 " HECT domain containing E3 ubiquitin protein ligase 4"; rs11066188 A (0.4152)

20 PTPN11

" Protein tyrosine phosphatase, non-receptor type 11"; PTPN11  produces a protein tyrosine phosphatase non-receptor 11 involved in cell 

growth, differentiation, and mitotic cycle. rs11066320 A (0.421)

23 FTO 16q12.2

"Fat mass and obesity associated"; Studies in mice and humans indicate a role in nervous and cardiovascular systems and a strong association 

with body mass index, obesity risk, and type 2 diabetes rs1558902 A (0.4163)

7 SLC39A8 4q22-q24

"Solute carrier family 39, member 8"; a solute carrier with structural characteristic of a zinc transporter. It is found in the plasma membrane 

and mitochondria, and functions in the cellular importation of zinc at the onset of inflammation. rs13107325 T (0.0748)

8 NELFE 6p21.3

"Negative elongation factor complex member E"; Represses RNA polymerase II transcript elongation;Localizes to the major histocompatibility 

complex (MHC) class III region on chromosome 6. rs419788 T (0.2954)

9 SKIV2L 6p21

"Superkiller viralicidic activity 2-like"; DEAD box proteins, characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), are putative 

RNA helicases. Some members of this family are believed to be involved in embryogenesis, spermatogenesis, and cellular growth and division. rs437179 A (0.2956)

10 STK19 6p21.3

"Serine/threonine kinase 19"; it is possible that phosphorylation of this protein is involved in transcriptional regulation. This gene localizes to 

the major histocompatibility complex (MHC) class III region on chromosome 6 rs389883 G (0.2954)

18 ATXN2
12q24.1

"Ataxin 2"; The autosomal dominant cerebellar ataxias are a heterogeneous group of neurodegenerative disorders characterized by 

progressive degeneration of the cerebellum, brain stem and spinal cord. rs653178 C (0.4687)

22 PDXDC1 16p13.11 "Pyridoxal-dependent decarboxylase domain containing 1"; rs4985155 G (0.3319)

24 MC4R 18q22

"Melanocortin 4 receptor"; A membrane-bound receptor and member of the melanocortin receptor family.  Defects in this gene are a cause of 

autosomal dominant obesity. rs6567160 C (0.2381)

* The corrsponding number matches with Table 2 order number (In table 2 this corresponds with ordering genes by chromosome and position).

Pleiotropic genes for lipids and inflammation

Pleiotropic genes for adiposity / obesity and inflammation

Pleiotropic genes for adiposity / obesity, lipids and inflammation
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Box 2. Supportive findings for known genes of the 25 MetS pleiotropic candidates. 

 

 

Group 1: Pleiotropic genes for lipids and inflammatory markers 
 

     The MACF1 was associated also with T2D 54. Recently, Fassett et al. 55 using inducible cardiac-specific MCF1 knockout mice concluded this gene works as a 

stress induced regulator of cardiomyocyte microtubule distribution and is important for ventricular adaptation to hemodynamic overload.  

     The GCKR rs1260326 was associated with T2D risk, by changing the ability of GCKR to sequester glucokinase in the nucleus of hepatocytes 56, and with 

hepatic fat accumulation along large VLDL and TG levels in obese youth 66. Rees et al 56, suggested that leucine allele elevates hepatic glucose uptake and 

disposal by increasing active cytosolic GCK, which would increase hepatic lipid biosynthesis, but also by decreasing fasting plasma glucose concentrations, 

which may provide a protective effect on T2D risk. Another GCKR SNP was associated with serum albumin 42, decreased levels of amino acids alanine and 

isoleucine and elevated levels of glutamine 67, with liver enzyme gamma-Glutamyltrasferase 47, and platelet count 61. GCKR associated with serum calcium 63. 

GCKR already has been proposed as a candidate for MetS for its significant associations with qualitative bivariate TG-BP and WC-TG 62. The rs2303369, 

neighboring GCKR and an intron of fibronectin type III (FNDC4) was associated significantly with menopause 68. 

     The GRB14 protein has a pleckstrin homology domain, a C-terminal Src homology 2 (SH2) domain, and an intervening ~45 residues known as BPS. GRB14 

and its family members GRB7 and GRB10 are recruited by a number of receptor tyrosine kinases 105. This recruitment is facilitated via phosphotyrosine binding 

the SH2 domain, while the INS and IGF1 receptors are recruited by the BPS region 60. Cooney et al. 59 noticed an improved glucose tolerance and an enhanced 

insulin-induced signaling in muscle and liver, but not in adipose tissue in a male mice deficient for Grb14 (-/-). They proposed that Grb14 was a negative 

regulator, tissue specific for insulin signaling. In a gene expression study, Grb14 expression was elevated in adipose tissue of both ob/ob mice and Goto-Kakizaki 

(non-obese T2D) rats 57. Our meta-results add to the importance of GRB14, which can be viewed as an inhibitor of the insulin receptor and therefore as affecting 

insulin signaling.  

     The COBLL1 58 associated with T2D 54. Adjacent to this gene toward GRB14 are a number of SNPs that were associate with T2D 106, TG 23 and HDLC 23. 

Albrechtsen et al. 54 showed that COBLL1 expresses in pancreatic islets and kidney, and to some degree in skeletal muscle, liver and adipose tissue. They 

guessed COBLL1 variants may influence expression of nearby GRB14 to change insulin sensitivity.  

     The LOC646736 rs2943634 was associated with coronary disease 65 and T2D 64. Downstream (~47K bps) from this SNP, an intron of LOC646736 was 

associated with T2D 80. Upstream of our meta-SNP, a few SNPs associates with TG 23, with adiposity 76, and with ADIP 30.  

     The LPL is significantly associated with TG and HDLC 23,39,42-45,62,69-73,75,77-79,81. LPL is part of glycerolipid metabolism pathway (map00561, kegg.jp), 

involved in free fatty acids production, and is also a member of PPAR signaling pathway (map03320, kegg.jp).  

     TRIB1 is reported in associations with TG, HDLC, LDLC 23, with alkaline phosphatase and alanine transaminase 47, with ADIP 30, with Crohn’s Disease 83, 

with bivariate qualitative combinations of HDLC-TG and TG-BP 62. Recently Akira et al. 82 working with Trib1(-/-) mice demonstrated that mice lacking Trib1 in 

hematopoietic cells exhibited severe lipodystrophy due to increased lipolysis, while in a high-fat diet, mice exhibited hypertriglyceridemia, insulin resistance, 

together with increased proinflammatory cytokine production. They suggested, that Trib1 is critical for adipose tissue maintenance and suppression of metabolic 

disorders by controlling the differentiation of tissue-resident anti-inflammatory-like macrophages. The rs10808546 positioned about 45K bps from TRIB1 is 

located in a DNAase mark often found in active regulatory elements.  

     Fox et al. 85 report association of ZNF664 with visceral adipose tissue adjusted for BMI and with visceral adipose tissue/subcutaneous adipose tissue ratio for 

women.  

     The TOMM40 is positioned at the side of the cluster APOE/APOC4/APOC2 and was associated with Alzheimer’s disease 86,96, low density lipoprotein 

cholesterol (LDLC) and HDLC 69, and CRP 69,95. The rs2075650 of TOMM40 is part of three signatures of promoter histone marks, part of enhancer histone 

markers in 6 cell types, it can be involved in a DNase signature, and is part of 8 changed motifs, among them sterol regulatory element binding transcription 

factor (SREBP).  
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Box 2 (Continued). Supportive findings for known genes of the 25 MetS pleiotropic candidates. 

 

 

 

 

 

 

Group2: Pleiotropic genes for adiposity / obesity and inflammation 
 

     An intron of TFAP2B, was associated with the effects of dietary fat intake on weight loss and waist reduction 99. A few other SNPs of TFAP2B associated 

significantly with BMI 22, adiposity 90 and with a qualitative bivariate WAIST-GLUC combination 62.  

     The PTPN11 was associated with platelet counts 97, with TG 74, and with carotid arteries 94.  

     While FTO contributes to the regulation of the global metabolic rate, energy expenditure, energy homeostasis, regulation of body size and body fat 

accumulation, its exact function is not known. Other SNPs of FTO were associated with BMI 22, body weight 101, adiposity 76, WAIST 87, with T2D 103 and less so 

with factor1 and factor2 of MetS risk factors 38. 

 

Group 3: Pleiotropic genes for adiposity / obesity, lipids and inflammation 
 

     The SLC39A8 protein is found in the plasma membrane and mitochondria, and functions in the cellular transport of of zinc at the onset of inflammation. 

SLC39A8 is a negative regulator of NF-κB and functions to negatively regulate proinflammatory responses through zinc-mediated down-modulation of IκB 

kinase (IKK) activity 91. SLC39A8 and SLC39A14 are regulated by IL-6 dependent signaling in the liver 92. In addition, rs230487, which is closer to NFKB1 than 

SLC39A8 was associated with tissue Plasminogen activator 102. Liu et al 91 proposed that SLC39A8 and SLC39A14 are important zinc transporters that channel 

zinc in a tissue-specific manner to fundamentally important intracellular checkpoints, which help to coordinate and balance host defense.  

     The NELFE, SKIV2L and STK19 position in the class III region of the major histocompatibility complex of chromosome 6. The three genes are likely 

involved in transcription regulation and have been found to be associated with Macular Degeneration and Lupus Erythematosus, and rs2072633, an intron of 

CFB – complement factor B, (but only 286 bps from NELFE gene) 88 being associated with Multiple Sclerosis.  

     The association of PDXDC1 with ADIP may indicate that its pleiotropic effect could have protective contributions for inflammation and MetS. Based on the 

ENCODE information the rs4985155 is located in a transcription factor binding site and to a DNase peak. The rs4500751, (chr16:15140211) mapped at NTAN1 

about 10.7K bps from our PDXDC1 meta-SNP, associated with absolute plasma levels and proportions of the phospholipid species with important roles in cell 

survival and inflammation 84. Other SNPs associated with blood metabolite concentration 100, and with phospholipids levels in plasma 89.  

     The MC4R is a member of melanocortin family. The melanocortins are involved in pigmentation, energy homeostasis, inflammation, immunomodulation, 

steroidogenesis and temperature control. Stäubert et al. 98 found a strong correlation between positional conservation and the functional relevance of missense, 

nonsense, and frame-shifting mutations of MC4R affecting 60 amino acid positions. The mostly heterozygous (dominant) occurring MC4R mutations are 

implicated in 1–6% of early-onset or severe adult obesity cases. Some of the GWAS findings indicated that MC4R was associated with BMI 22,29), obesity 93, 

body height 104, with body weight 101, WAIST 70, and with HDLC 23.  
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Tables and Figures 

Table 1.a. XC-Pleiotropy Consortium studies for assessing associations among MetS and inflammatory markers and identifying 

promising trait combinations for evaluating the role of pleiotropy in MetS etiology. 

 

 

 

 

 

 

 

 

 

 

No Participating studies Acronym Cohorts

1 The Atherosclerosis Risk in Communities Study ARIC AA and EA

2 The Coronary Artery Risk Development in Young Adults CARDIA EA

3 The Johns Hopkins Genetic Study of Atherosclerosis Risk GeneSTAR AA and EA

4 The Genetic Epidemiology Network of Arteriopathy GENOA AA and EA

5 The Family Heart Study FamHS EA

6 The Framingham Heart Study FHS EA

7 The INTER99 INTER99 EA

8 The LifeLines Cohort Study EA

9 The Rotterdam Study RS EA

10 The Women’s Genome Health Study WGHS EA

11 The Women’s Health Initiative WHI EA

Note: The addition of a suffix –AA in the study name refers to an African American cohort,
and –EA refers to a European ancestry cohort.
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Table 1.b. Sources of association tests results analyzed in our 9 correlated meta-analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

No Contributing studies Acronym Traits Studies (N) Participants (N) SNPs (N) Reference

1 The Genetic Investigation of Anthropometric Traits Consortium GIANT BMI, WAIST 28 ~124,000 ~2.5M 22,29

2 The Global Lipids Genetics Consortium GLGC HDLC, TG 46 ~99,000 ~2.5M 23

3 The Meta-Analyses of Glucose and Insulin-related traits MAGIC GLUC, INS 21 ~46,000, 38,000  ~2.5M 19

4 The Global BPgen GBPG SBP, DBP 17 ~34,000 ~2.5M 21

5 The Cohorts of the Heart and Aging Research in Genomic Epidemiology Consortium CHARGE 

6 and The European Special Population Network EUROSPAN

7 and six independent studies

8 Independent cohorts of European-ancestry PAI-1 8 ~19,599 ~2.5M 25

9 The Cohorts of the Heart and Aging Research in Genomic Epidemiology Consortium CHARGE WBCC 7 ~19509 ~2.5M 26

10 ADIPOGen Consortium ADIPOGen ADIP 23 ~35,355 ~2.5M 30

11 The Women’s Genome Health Study WGHS ICAM-1 1 2,435 ~0.3M 27

12 The Howard University Family Study HUFS IL-6 1 707 ~5.0M 31

15 ~66,185CRP ~2.5M 24
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Table 2. Meta-analyses results of 9 classes of trait-combinations.   

Footnote: Selected are best SNPs per gene with up to three possibilities, within a gene, up to 5 KB from the nearest gene or beyond 

5KB to the nearest gene. A SNP to be selected had to fulfill the following conditions: meta -log10p ≥ 8 and at least one metabolic trait 

and one inflammatory marker with -log10p ≥ 3. Table 1 represents SNPs that can be considered as contributors to MetS. Yellow color 

shows SNPs that pass or reach a threshold of -log10p ≥ 3, orange color marks SNPs that pass or reach a threshold of -log10p ≥ 8, and 

green indicates SNPs that might show some protective effect against MetS (see Discussion for clusters of ADIP and HDLC). Note: A 

particular SNP is intergenic and marked with ()_beyond when its location was more than 5K bps; rs- rsname, chrom- chromosome, 

position in bps, meta_nlog10p – meta -log10p, BMI, WAIST, HDLC, TG, GLUC, INS, SBP, DBP, CRP, PAI1, IL6, ICAM1, ADIP, 

and WBCC represent -log10p values for each trait, hugo –gene symbol, role –SNPs role, diffPosNearGene is a distance in bps from the 

start or end SNP of the closest gene, while 0 distance when within a gene, newhugo –the closest gene to the reported SNP. 

 

 

 

 

No Trait combination rs chrom position meta_nlog10p BMI WAIST HDLC TG GLUC INS SBP DBP CRP PAI1 IL6 ICAM1 ADIP WBCC hugo role diffPosNearGene newhugo

1 1. bwhtgisd_rp rs1537817 1 39639653 17.71 1.52 3.24 8.94 5.14 2.99 1.28 2.47 1.93 6.33 MACF1 intron-variant 0 MACF1

2 1. bwhtgisd_rp rs3768302 1 39880319 15.73 1.15 2.72 8.72 4.90 2.95 0.89 2.20 1.65 6.56 KIAA0754 utr-variant-3-prime 0 KIAA0754

3 6. ht_rpcc rs1260326 2 27730940 78.71 1.11 132.25 42.26 0.23 GCKR missense 0 GCKR

4 7. ht_i1ip rs10184004 2 165508389 18.21 6.98 9.76 2.54 4.52 28106 (GRB14)_beyond

5 7. ht_i1ip rs10195252 2 165513091 18.33 7.03 9.79 2.65 4.44 -27709 (COBLL1)_beyond

6 7. ht_i1ip rs2943634 2 227068080 15.59 8.63 7.29 0.96 5.22 22841 (LOC646736)_beyond

7 9. bwhtgisdt2d_rpi1l6m1ipcc rs13107325 4 103188709 13.27 6.86 3.16 10.14 1.82 0.18 0.40 3.91 4.18 0.36 0.48 1.87 4.13 0.15 SLC39A8 missense 0 SLC39A8

8 9. bwhtgisdt2d_rpi1l6m1ipcc rs419788 6 31928799 12.72 4.48 2.52 0.07 13.56 0.14 0.71 3.25 0.82 1.65 3.07 0.83 1.06 1.20 3.71 NELFE upstream-variant-2KB 0 NELFE

9 9. bwhtgisdt2d_rpi1l6m1ipcc rs437179 6 31929014 12.50 4.41 2.54 0.11 13.46 0.20 0.64 3.28 0.84 1.49 2.89 0.83 1.09 1.07 3.24 SKIV2L missense 0 SKIV2L

10 9. bwhtgisdt2d_rpi1l6m1ipcc rs389883 6 31947460 13.49 4.43 2.46 0.24 14.40 0.19 0.90 3.74 0.99 1.43 3.05 0.94 1.16 3.06 STK19 intron-variant 0 STK19

11 5. bw_rpl6cc rs3857599 6 50938247 15.42 13.58 10.21 3.64 0.54 122468 (TFAP2B)_beyond

12 6. ht_rpcc rs7811265 7 72934510 37.67 5.92 58.04 7.25 0.70 BAZ1B intron-variant 0 BAZ1B

13 6. ht_rpcc rs13233571 7 72971231 35.49 8.54 57.03 7.55 0.07 BCL7B intron-variant 0 BCL7B

14 6. ht_rpcc rs11974409 7 72989390 35.79 5.49 57.90 6.94 0.51 TBL2 intron-variant 0 TBL2

15 6. ht_rpcc rs17145750 7 73026378 36.94 6.82 57.80 6.33 0.56 MLXIPL intron-variant 0 MLXIPL

16 6. ht_rpcc rs3289 8 19823192 32.66 26.70 18.94 3.60 1.44 LPL utr-variant-3-prime 0 LPL

17 7. ht_i1ip rs10808546 8 126495818 51.41 18.20 53.42 2.94 4.60 44737 (TRIB1)_beyond

18 9. bwhtgisdt2d_rpi1l6m1ipcc rs653178 12 112007756 14.55 3.83 3.48 5.80 0.69 0.36 0.26 3.43 6.71 0.44 0.43 2.12 16.50 0.02 1.60 ATXN2 intron-variant 0 ATXN2

19 9. bwhtgisdt2d_rpi1l6m1ipcc rs11066188 12 112610714 9.16 4.01 3.62 2.69 0.12 0.35 0.13 3.52 5.90 0.33 0.07 11.36 0.17 1.93 HECTD4 intron-variant 0 HECTD4

20 9. bwhtgisdt2d_rpi1l6m1ipcc rs11066320 12 112906415 8.97 3.83 3.24 2.70 0.24 0.34 0.06 3.70 5.75 0.44 0.22 9.41 0.28 1.19 PTPN11 intron-variant 0 PTPN11

21 7. ht_i1ip rs12310367 12 124486678 15.55 9.51 7.92 0.14 7.94 ZNF664 intron-variant 0 ZNF664

22 3. whti_ipcc rs4985155 16 15129459 8.23 5.00 1.66 4.92 0.58 4.11 0.22 PDXDC1 intron-variant 0 PDXDC1

23 4. bwi_rpi1 rs1558902 16 53803574 60.99 61.69 49.38 4.12 5.65 1.41 FTO intron-variant 0 FTO

24 1. bwhtgisd_rp rs6567160 18 57829135 24.58 21.74 18.08 7.91 4.75 0.34 1.79 0.75 0.64 3.82 -208947 (MC4R)_beyond

25 6. ht_rpcc rs2075650 19 45395619 67.63 15.96 18.88 86.52 0.16 TOMM40 intron-variant 0 TOMM40
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Table 3. Average correlations and their lower and upper r estimates for 100 replications of simulated metabolic traits and 

inflammatory biomarkers (immitating 100 sets of 14 cohorts real studies’ data, p=17, N=85,523) simulated with missing values 

(simulation 1, see Methods.3). 

 

 

 

Correlations of Metabolic traits 
and Inflammatory markers

Correlations of Metabolic traits Correlations of Inflammatory markers

bmi BMI WAIST HDLC TG INS GLUC SBP DBP fib BMI WAIST HDLC TG INS GLUC SBP DBP fib FIB CRP PAI1 IL6 TNFA ICAM1 IL10 ADIP WBCC

mean 1 0.844 -0.336 0.306 0.510 0.282 0.293 0.263 mean 0.254 0.253 -0.200 0.105 0.147 0.079 0.105 0.073 mean 1 0.442 0.150 0.331 0.101 0.229 0.099 -0.126 0.291

sd 0 0.001 0.003 0.003 0.003 0.004 0.003 0.003 sd 0.004 0.004 0.004 0.005 0.004 0.005 0.004 0.004 sd 0 0.004 0.010 0.007 0.009 0.005 0.014 0.009 0.005

min 1 0.841 -0.344 0.299 0.502 0.272 0.286 0.257 min 0.244 0.243 -0.209 0.093 0.137 0.067 0.098 0.064 min 1 0.433 0.128 0.317 0.075 0.219 0.065 -0.147 0.279

max 1 0.846 -0.328 0.315 0.519 0.293 0.300 0.272 max 0.263 0.264 -0.189 0.116 0.159 0.090 0.117 0.087 max 1 0.452 0.171 0.347 0.119 0.239 0.145 -0.102 0.309

waist BMI WAIST HDLC TG INS GLUC SBP DBP crp BMI WAIST HDLC TG INS GLUC SBP DBP crp FIB CRP PAI1 IL6 TNFA ICAM1 IL10 ADIP WBCC

mean 0.844 1 -0.336 0.321 0.513 0.279 0.276 0.247 mean 0.406 0.380 -0.196 0.275 0.259 0.154 0.191 0.156 mean 0.442 1 0.268 0.416 0.135 0.266 0.200 -0.082 0.319

sd 0.001 0 0.003 0.003 0.003 0.004 0.003 0.003 sd 0.003 0.003 0.004 0.010 0.005 0.004 0.003 0.004 sd 0.004 0 0.008 0.008 0.010 0.004 0.015 0.006 0.005

min 0.841 1 -0.344 0.313 0.505 0.269 0.268 0.239 min 0.399 0.374 -0.204 0.255 0.249 0.141 0.184 0.148 min 0.433 1 0.247 0.398 0.110 0.257 0.157 -0.097 0.306

max 0.846 1 -0.328 0.327 0.523 0.288 0.284 0.254 max 0.415 0.387 -0.187 0.290 0.273 0.166 0.199 0.166 max 0.452 1 0.287 0.439 0.157 0.274 0.239 -0.064 0.333

hdlc BMI WAIST HDLC TG INS GLUC SBP DBP pai1 BMI WAIST HDLC TG INS GLUC SBP DBP pai1 FIB CRP PAI1 IL6 TNFA ICAM1 IL10 ADIP WBCC

mean -0.336 -0.336 1 -0.481 -0.359 -0.175 -0.107 -0.091 mean 0.444 0.447 -0.372 0.389 0.497 0.332 0.176 0.152 mean 0.150 0.268 1 0.141 0.160 0.210 0.060 -0.353 0.160

sd 0.003 0.003 0 0.004 0.003 0.004 0.004 0.004 sd 0.008 0.008 0.009 0.008 0.008 0.009 0.009 0.009 sd 0.010 0.008 0 0.029 0.017 0.010 0.017 0.014 0.008

min -0.344 -0.344 1 -0.490 -0.367 -0.183 -0.117 -0.101 min 0.421 0.430 -0.391 0.372 0.480 0.304 0.159 0.129 min 0.128 0.247 1 0.070 0.123 0.188 0.022 -0.384 0.142

max -0.328 -0.328 1 -0.473 -0.350 -0.168 -0.101 -0.082 max 0.470 0.473 -0.345 0.405 0.520 0.349 0.204 0.173 max 0.171 0.287 1 0.202 0.210 0.232 0.121 -0.309 0.180

tg BMI WAIST HDLC TG INS GLUC SBP DBP il6 BMI WAIST HDLC TG INS GLUC SBP DBP il6 FIB CRP PAI1 IL6 TNFA ICAM1 IL10 ADIP WBCC

mean 0.306 0.321 -0.481 1 0.376 0.208 0.202 0.185 mean 0.285 0.290 -0.175 0.140 0.192 0.126 0.129 0.090 mean 0.331 0.416 0.141 1 0.251 0.247 . -0.130 0.234

sd 0.003 0.003 0.004 0 0.004 0.004 0.004 0.004 sd 0.008 0.008 0.007 0.008 0.007 0.008 0.009 0.008 sd 0.007 0.008 0.029 0 0.011 0.010 . 0.009 0.015

min 0.299 0.313 -0.490 1 0.366 0.196 0.193 0.175 min 0.269 0.276 -0.192 0.121 0.176 0.108 0.111 0.070 min 0.317 0.398 0.070 1 0.223 0.220 . -0.155 0.207

max 0.315 0.327 -0.473 1 0.386 0.218 0.210 0.193 max 0.308 0.312 -0.158 0.157 0.212 0.146 0.149 0.114 max 0.347 0.439 0.202 1 0.274 0.271 . -0.112 0.280

ins BMI WAIST HDLC TG INS GLUC SBP DBP tnfa BMI WAIST HDLC TG INS GLUC SBP DBP tnfa FIB CRP PAI1 IL6 TNFA ICAM1 IL10 ADIP WBCC

mean 0.510 0.513 -0.359 0.376 1 0.355 0.209 0.205 mean 0.098 0.094 -0.178 0.135 0.105 0.072 0.042 0.047 mean 0.101 0.135 0.160 0.251 1 0.253 0.099 -0.060 0.058

sd 0.003 0.003 0.003 0.004 0 0.004 0.004 0.005 sd 0.011 0.011 0.009 0.010 0.009 0.009 0.009 0.010 sd 0.009 0.010 0.017 0.011 0 0.009 0.015 0.010 0.016

min 0.502 0.505 -0.367 0.366 1 0.342 0.199 0.194 min 0.074 0.069 -0.208 0.110 0.085 0.051 0.014 0.022 min 0.075 0.110 0.123 0.223 1 0.225 0.054 -0.088 0.024

max 0.519 0.523 -0.350 0.386 1 0.367 0.223 0.214 max 0.125 0.121 -0.154 0.159 0.130 0.097 0.068 0.065 max 0.119 0.157 0.210 0.274 1 0.277 0.134 -0.036 0.099

gluc BMI WAIST HDLC TG INS GLUC SBP DBP icam1 BMI WAIST HDLC TG INS GLUC SBP DBP icam1 FIB CRP PAI1 IL6 TNFA ICAM1 IL10 ADIP WBCC

mean 0.282 0.279 -0.175 0.208 0.355 1 0.185 0.138 mean 0.163 0.176 -0.210 0.171 0.197 0.106 0.101 0.077 mean 0.229 0.266 0.210 0.247 0.253 1 0.179 -0.050 0.173

sd 0.004 0.004 0.004 0.004 0.004 0 0.004 0.004 sd 0.005 0.004 0.005 0.007 0.007 0.007 0.005 0.005 sd 0.005 0.004 0.010 0.010 0.009 0 0.014 0.007 0.009

min 0.272 0.269 -0.183 0.196 0.342 1 0.176 0.125 min 0.154 0.165 -0.228 0.154 0.179 0.091 0.084 0.066 min 0.219 0.257 0.188 0.220 0.225 1 0.140 -0.064 0.150

max 0.293 0.288 -0.168 0.218 0.367 1 0.199 0.150 max 0.174 0.189 -0.201 0.183 0.219 0.126 0.113 0.091 max 0.239 0.274 0.232 0.271 0.277 1 0.209 -0.035 0.195

sbp BMI WAIST HDLC TG INS GLUC SBP DBP il10 BMI WAIST HDLC TG INS GLUC SBP DBP il10 FIB CRP PAI1 IL6 TNFA ICAM1 IL10 ADIP WBCC

mean 0.293 0.276 -0.107 0.202 0.209 0.185 1 0.742 mean 0.001 0.032 -0.069 -0.011 0.041 0.019 -0.001 0.011 mean 0.099 0.200 0.060 . 0.099 0.179 1 -0.019 0.049

sd 0.003 0.003 0.004 0.004 0.004 0.004 0 0.001 sd 0.017 0.018 0.016 0.017 0.014 0.014 0.015 0.016 sd 0.014 0.015 0.017 . 0.015 0.014 0 0.015 0.018

min 0.286 0.268 -0.117 0.193 0.199 0.176 1 0.737 min -0.041 -0.005 -0.110 -0.048 0.008 -0.011 -0.036 -0.023 min 0.065 0.157 0.022 . 0.054 0.140 1 -0.052 0.005

max 0.300 0.284 -0.101 0.210 0.223 0.199 1 0.745 max 0.055 0.087 -0.026 0.049 0.087 0.055 0.031 0.050 max 0.145 0.239 0.121 . 0.134 0.209 1 0.019 0.088

dbp BMI WAIST HDLC TG INS GLUC SBP DBP adip BMI WAIST HDLC TG INS GLUC SBP DBP adip FIB CRP PAI1 IL6 TNFA ICAM1 IL10 ADIP WBCC

mean 0.263 0.247 -0.091 0.185 0.205 0.138 0.742 1 mean -0.233 -0.244 0.399 -0.331 -0.319 -0.195 -0.075 -0.055 mean -0.126 -0.082 -0.353 -0.130 -0.060 -0.050 -0.019 1 -0.219

sd 0.003 0.003 0.004 0.004 0.005 0.004 0.001 0 sd 0.006 0.006 0.005 0.005 0.006 0.007 0.007 0.006 sd 0.009 0.006 0.014 0.009 0.010 0.007 0.015 0 0.015

min 0.257 0.239 -0.101 0.175 0.194 0.125 0.737 1 min -0.250 -0.255 0.385 -0.344 -0.332 -0.210 -0.091 -0.066 min -0.147 -0.097 -0.384 -0.155 -0.088 -0.064 -0.052 1 -0.246

max 0.272 0.254 -0.082 0.193 0.214 0.150 0.745 1 max -0.219 -0.226 0.413 -0.317 -0.300 -0.177 -0.060 -0.039 max -0.102 -0.064 -0.309 -0.112 -0.036 -0.035 0.019 1 -0.181

wbbc BMI WAIST HDLC TG INS GLUC SBP DBP wbbc FIB CRP PAI1 IL6 TNFA ICAM1 IL10 ADIP WBCC

Note: correlation mean of 100 simulated replications, sd- standard deviation, mean 0.146 0.175 -0.195 0.236 0.168 0.095 0.120 0.067 mean 0.291 0.319 0.160 0.234 0.058 0.173 0.049 -0.219 1

min-minimum, and max- maximum of correlation in 100 replications sd 0.004 0.004 0.004 0.004 0.005 0.004 0.005 0.005 sd 0.005 0.005 0.008 0.015 0.016 0.009 0.018 0.015 0

Highlighted in yellow correlation coefficents ~(0.2 - < 0.4), min 0.133 0.165 -0.207 0.227 0.156 0.086 0.104 0.056 min 0.279 0.306 0.142 0.207 0.024 0.150 0.005 -0.246 1

in orange ~(0.4-<0.6) and in red ≥ 0.6 max 0.153 0.184 -0.182 0.247 0.181 0.104 0.134 0.079 max 0.309 0.333 0.180 0.280 0.099 0.195 0.088 -0.181 1
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Figure 1. Prevalence of MetS and its components and mean levels of inflammatory biomarkers in individuals classified with and 

without MetS.  

Footnote: Top histogram numbers represent prevalence (%) of MetS, T2D and MetS components. Bottom numbers represent number 

of participants for a particular trait. The biomarker boxplot graph comparisons were built by using “rnorm” function in R with mean, 

standard deviation and sample size corresponding to subgroups with and without MetS from original (B) data. Overall, they represent 

53 tests of biomarkers per MetS strata, summarized in Supplemental Figure 1(a-g). The number within each pair of boxplots marked 

by “D=” is the difference of two means of an inflammatory biomarker in groups of participants classified with versus without MetS 

(M1 vs. M0). The light yellow boxed number at the bottom of the same graph marked with “pt=” represents a p-value calculated by 

pooled t-test for testing if their means (M1 vs. M0) are different. In case the color of pt-value box is gray, then the p-value does not 

pass the Bonferroni threshold p=9.43e-04. 
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Figure 2. A network of 25 pleiotropic genes with hypothetical contributions to MetS, including inflammation.  

Footnote: In the figure they connect by GWAS phenotypic evidence and whether selected SNPs show any regulatory features based 

on the ENCODE database as implemented via HaploReg 32 / regulomeDB 33 software (All phenotypic labels correspond to 

associations reported in the Results, Discussion, Box 2 and Suppplemental Table 5). 

 

 

Pleiotropic genes for adiposity / obesity, lipids, inflammation

Traits Pleiotropic genes for adiposity / obesity and inflammation

Pleiotropic genes for lipids and inflammation
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