7 research outputs found

    Measurement of the top-quark mass in the fully hadronic decay channel from ATLAS data at s=7\sqrt{s}=7 TeV

    Get PDF
    The mass of the top quark is measured in a data set corresponding to 4.6 fb1^{−1} of proton--proton collisions with centre-of-mass energy s=7\sqrt{s}=7 TeV collected by the ATLAS detector at the LHC. Events consistent with hadronic decays of top--antitop quark pairs with at least six jets in the final state are selected. The substantial background from multijet production is modelled with data-driven methods that utilise the number of identified bb-quark jets and the transverse momentum of the sixth leading jet, which have minimal correlation. The top-quark mass is obtained from template fits to the ratio of three-jet to dijet mass. The three-jet mass is calculated from the three jets of a top-quark decay. Using these three jets the dijet mass is obtained from the two jets of the WW boson decay. The top-quark mass obtained from this fit is thus less sensitive to the uncertainty in the energy measurement of the jets. A binned likelihood fit yields a top-quark mass of mtm_{t} = 175.1 ±\pm 1.4 (stat.) ±\pm 1.2 (syst.) GeV.publishedVersio

    Search for a heavy top-quark partner in final states with two leptons with the ATLAS detector at the LHC

    No full text

    Measurement of W(+/-)Z production in proton-proton collisions at root s=7 TeV with the ATLAS detector

    No full text

    Search for s-channel single top-quark production in proton-proton collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    This Letter presents a search at the LHC for s-channel single top-quark production in proton–proton collisions at a centre-of-mass energy of 8 TeV. The analyzed data set was recorded by the ATLAS detector and corresponds to an integrated luminosity of 20.3 fb−1. Selected events contain one charged lepton, large missing transverse momentum and exactly two b-tagged jets. A multivariate event classifier based on boosted decision trees is developed to discriminate s-channel single top-quark events from the main background contributions. The signal extraction is based on a binned maximum-likelihood fit of the output classifier distribution. The analysis leads to an upper limit on the s -channel single top-quark production cross-section of 14.6 pb at the 95% confidence level. The fit gives a cross-section of σs=5.0±4.3 pb, consistent with the Standard Model expectation
    corecore