62 research outputs found

    Little-Parks oscillations with half-quantum fluxoid features in Sr2RuO4 micro rings

    Full text link
    In a micro ring of a superconductor with a spin-triplet equal-spin pairing state, a fluxoid, a combined object of magnetic flux and circulating supercurrent, can penetrate as half-integer multiples of the flux quantum. A candidate material to investigate such half-quantum fluxoids is Sr2_\mathsf{2}RuO4_\mathsf{4}. We fabricated Sr2_\mathsf{2}RuO4_\mathsf{4} micro rings using single crystals and measured their resistance behavior under magnetic fields controlled with a three-axes vector magnet. Proper Little-Parks oscillations in the magnetovoltage as a function of an axially applied field, associated with fluxoid quantization are clearly observed, for the first time using bulk single crystalline superconductors. We then performed magnetovoltage measurements with additional in-plane magnetic fields. By carefully analyzing both the voltages V+V_+ (VV_-) measured at positive (negative) current, we find that, above an in-plane threshold field of about 10 mT, the magnetovoltage maxima convert to minima. We interpret this behavior as the peak splitting expected for the half-quantum fluxoid states.Comment: 16 pages, 15 figure

    Hybridization-induced superconductivity from the electron repulsion on a tetramer lattice having a disconnected Fermi surface

    Full text link
    Plaquette lattices with each unit cell containing multiple atoms are good candidates for disconnected Fermi surfaces, which are shown by Kuroki and Arita to be favorable for spin-flucutation mediated superconductivity from electron repulsion. Here we find an interesting example in a tetramer lattice where the structure within each unit cell dominates the nodal structure of the gap function. We trace its reason to the way in which a Cooper pair is formed across the hybridized molecular orbitals, where we still end up with a T_c much higher than usual.Comment: 4 pages, 6 figure

    Spectral evolution of GRB 060904A observed with Swift and Suzaku -- Possibility of Inefficient Electron Acceleration

    Full text link
    We observed an X-ray afterglow of GRB 060904A with the Swift and Suzaku satellites. We found rapid spectral softening during both the prompt tail phase and the decline phase of an X-ray flare in the BAT and XRT data. The observed spectra were fit by power-law photon indices which rapidly changed from Γ=1.510.03+0.04\Gamma = 1.51^{+0.04}_{-0.03} to Γ=5.300.59+0.69\Gamma = 5.30^{+0.69}_{-0.59} within a few hundred seconds in the prompt tail. This is one of the steepest X-ray spectra ever observed, making it quite difficult to explain by simple electron acceleration and synchrotron radiation. Then, we applied an alternative spectral fitting using a broken power-law with exponential cutoff (BPEC) model. It is valid to consider the situation that the cutoff energy is equivalent to the synchrotron frequency of the maximum energy electrons in their energy distribution. Since the spectral cutoff appears in the soft X-ray band, we conclude the electron acceleration has been inefficient in the internal shocks of GRB 060904A. These cutoff spectra suddenly disappeared at the transition time from the prompt tail phase to the shallow decay one. After that, typical afterglow spectra with the photon indices of 2.0 are continuously and preciously monitored by both XRT and Suzaku/XIS up to 1 day since the burst trigger time. We could successfully trace the temporal history of two characteristic break energies (peak energy and cutoff energy) and they show the time dependence of t3t4\propto t^{-3} \sim t^{-4} while the following afterglow spectra are quite stable. This fact indicates that the emitting material of prompt tail is due to completely different dynamics from the shallow decay component. Therefore we conclude the emission sites of two distinct phenomena obviously differ from each other.Comment: 19 pages, 9 figures, accepted for publication in PASJ (Suzaku 2nd Special Issue

    Superconducting Gap Structure of Spin-Triplet Superconductor Sr_2RuO_4 Studied by Thermal Conductivity

    Full text link
    To clarify the superconducting gap structure of the spin-triplet superconductor Sr_2RuO_4, the in-plane thermal conductivity has been measured as a function of relative orientations of the thermal flow, the crystal axes, and a magnetic field rotating within the 2D RuO_2 planes. The in-plane variation of the thermal conductivity is incompatible with any model with line nodes vertical to the 2D planes and indicates the existence of horizontal nodes. These results place strong constraints on models that attempt to explain the mechanism of the triplet superconductivity.Comment: 5 pages, 4 figures, to be published in Phys. Rev. Let

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF
    corecore