215 research outputs found

    Effect of hydrogen bonding and complexation with metal ions on the fluorescence of luotonin A

    Get PDF
    Fluorescence characteristics of a biologically active natural alkaloid, luotonin A (LuA), were studied by steady-state and time-resolved spectroscopic methods. The rate constant of the radiationless deactivation from the singlet-excited state diminished by more than one order of magnitude when the solvent polarity was changed from toluene to water. Dual emission was found in polyfluorinated alcohols of large hydrogen bond donating ability due to photoinitiated proton displacement along the hydrogen bond. In CH 2Cl2, LuA produced both 1:1 and 1:2 hydrogen-bonded complexes with hexafluoro-2-propanol (HFIP) in the ground state. Photoexcitation of the 1:2 complex led to protonated LuA, whose fluorescence appeared at a long wavelength. LuA served as a bidentate ligand forming 1:1 complexes with metal ions in acetonitrile. The stability of the complexes diminished in the series of Cd2+ > Zn2+ > Ag+, and upon competitive binding of water to the metal cations. The effect of chelate formation on the fluorescent properties was revealed. © 2013 The Royal Society of Chemistry and Owner Societies

    1-(2-Chlorobenzyloxy)-3-[1,2,3]triazol-1-yl-propan-2-ol Derivatives: Synthesis, Characterization, and DFT-Based Descriptors Analysis

    Get PDF
    A novel series of 1-(2-chlorobenzyloxy)-3-[1,2,3]triazol-1-yl-propan-2-ol derivatives was designed and synthesized using copper catalyzed alkyne-azide cycloaddition in the key step. Theoretical investigation of molecular and electronic properties by means of global and local reactivity indexes of the synthetized compounds was carried out, using DFT (Density Functional Theory) at PBEPBE/6-31++G∗∗ levelCONACY

    New insights into the pathogenesis of giant cell arteritis

    Get PDF
    Giant cell arteritis (GCA) is an inflammatory chronic disease occurring exclusively in elderly individuals. Until recently, the disease has been considered a unique disease resulting from the interaction in the walls of susceptible arteries, between an unknown infectious agents with local dendritic cells (DCs), activated CD4 T cells and effector macrophages. Recent evidence has shown that this view was too simplistic and has clarified many of the pathogenetic aspects of the disease. Many genetic studies recently published have identified different new genes, including cytokines, adhesion molecules and regulators of innate immunity, as crucial players in the development and progression of GCA. Recent evidence suggests that there is heterogeneity of histological lesions in GCA, that are correlated with different immunological Th9 and Th17 signature. The recent demonstration that Varicella-zoster virus (VZV) antigen is present in the 64% of GCA-negative TAs and in the 73% of GCA-positive TAs could represent an important point of arrival in the search for a causative agent in the pathogenesis of a metameric disease such as GCA. In this context, cytokines such as IL-32 and IL-33 that act as a danger signal following tissue damage and infection are over-expressed in GCA arteries. Artery tertiary lymphoid organs, present in up to 50% of GCA-positive arteries, could represent the sites were primary immune responses and T- and B-cell autoimmune responses against viral antigens are organized. The recently demonstrated disturbed distribution of B cells in GCA could be also relevant in the pathogenesis of the disease, possibly contributing to the enhanced IL-6 response. Altogether, these evidences may clarify many pathogenetic aspect of the disease, also suggesting complexity greater than first imagined

    Protective Role of the Interleukin 33 rs3939286 Gene Polymorphism in the Development of Subclinical Atherosclerosis in Rheumatoid Arthritis Patients

    Get PDF
    OBJECTIVES: To determine whether the interleukin-33 (IL-33)-interleukin-1 receptor like 1 (IL-1RL1) signaling pathway is implicated in the risk of subclinical atherosclerosis in patients with rheumatoid arthritis (RA). METHODS: A total of 576 Spanish RA patients from Northern Spain were genotyped for 6 well-known IL33-IL1RL1 polymorphisms (IL33 rs3939286, IL33 rs7025417, IL33 rs7044343, IL1RL1 rs2058660, IL1RL1 rs2310173 and IL1RL1 rs13015714) by TaqMan genotyping assay. The presence of subclinical atherosclerosis was determined by the assessment of carotid intima-media thickness (cIMT) by carotid ultrasound (US). RESULTS: RA patients carrying the TT genotype of the IL33 rs3939286 polymorphism had lower cIMT values than those homozygous for the CC genotype (mean ± standard deviation (SD): 0.71 ± 0.14 mm versus 0.76 ± 0.16 mm, respectively) while patients carrying the CT genotype had intermediate cIMT values (mean ± SD: 0.73 ± 0.17 mm). Moreover, RA patients carrying the mutant allele T of the IL33 rs3939286 polymorphism exhibited significantly lower cIMT values than those carrying the wild allele C (mean ± SD: 0.72 ± 0.16 mm versus 0.75 ± 0.18 mm respectively; p = 0.04). The association of both genotype and allele frequencies of IL33 rs3939286 and cIMT levels remained statistically significant after adjustment for sex, age at the time of US study, follow-up and center (p = 0.006 and p = 0.0023, respectively), evidencing that the potential effect conferred by IL33 rs3939286 may be independent of confounder factors. No association with other IL33-IL1RL1 genetic variants was observed. CONCLUSIONS: In conclusion, our results may suggest a potential protective effect of the IL33 rs3939286 allele T in the risk of subclinical atherosclerosis in patients with RA

    A TNFSF13B functional variant is not involved in systemic sclerosis and giant cell arteritis susceptibility

    Get PDF
    The TNFSF13B (TNF superfamily member 13b) gene encodes BAFF, a cytokine with a crucial role in the differentiation and activation of B cells. An insertion-deletion variant (GCTGT→A) of this gene, leading to increased levels of BAFF, has been recently implicated in the genetic predisposition to several autoimmune diseases, including multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis. Based on the elevated levels of this cytokine found in patients with giant cell arteritis (GCA) and systemic sclerosis (SSc), we aimed to assess whether this functional variant also represents a novel genetic risk factor for these two disorders. Methods A total of 1,728 biopsy-proven GCA patients from 4 European cohorts, 4,584 SSc patients from 3 European cohorts and 5,160 ethnically-matched healthy controls were included in the study. The single nucleotide polymorphism (SNP) rs374039502, which colocalizes with the genetic variant previously implicated in autoimmunity, was genotyped using a custom TaqMan assay. First, association analysis was conducted in each independent cohort using χ2 test in Plink (v1.9). Subsequently, different case/control sets were meta-analyzed by the inverse variance method. Results No statistically significant differences were found when allele distributions were compared between cases and controls for any of the analyzed cohorts. Similarly, combined analysis of the different sets evidenced a lack of association of the rs374039502 variant with GCA (P = 0.421; OR (95% CI) = 0.92 (0.75–1.13)) and SSc (P = 0.500; OR (95% CI) = 1.05 (0.91–1.22)). The stratified analysis considering the main clinical subphenotypes of these diseases yielded similar negative results. Conclusion Our data suggest that the TNFSF13B functional variant does not contribute to the genetic network underlying GCA and SSc

    Neural Crest Cell Survival Is Dependent on Rho Kinase and Is Required for Development of the Mid Face in Mouse Embryos

    Get PDF
    Neural crest cells (NCC) give rise to much of the tissue that forms the vertebrate head and face, including cartilage and bone, cranial ganglia and teeth. In this study we show that conditional expression of a dominant-negative (DN) form of Rho kinase (Rock) in mouse NCC results in severe hypoplasia of the frontonasal processes and first pharyngeal arch, ultimately resulting in reduction of the maxilla and nasal bones and severe craniofacial clefting affecting the nose, palate and lip. These defects resemble frontonasal dysplasia in humans. Disruption of the actin cytoskeleton, which leads to abnormalities in cell-matrix attachment, is seen in the RockDN;Wnt1-cre mutant embryos. This leads to elevated cell death, resulting in NCC deficiency and hypoplastic NCC-derived craniofacial structures. Rock is thus essential for survival of NCC that form the craniofacial region. We propose that reduced NCC numbers in the frontonasal processes and first pharyngeal arch, resulting from exacerbated cell death, may be the common mechanism underlying frontonasal dysplasia

    A candidate gene approach identifies an IL33 genetic variant as a novel genetic risk factor for GCA

    Get PDF
    INTRODUCTION: Increased expression of IL-33 and its receptor ST2, encoded by the IL1RL1 gene, has been detected in the inflamed arteries of giant cell arteritis (GCA) patients. The aim of the present study was to investigate for the first time the potential influence of the IL33 and IL1RL1 loci on GCA predisposition. METHODS: A total of 1,363 biopsy-proven GCA patients and 3,908 healthy controls from four European cohorts (Spain, Italy, Germany and Norway) were combined in a meta-analysis. Six genetic variants: rs3939286, rs7025417 and rs7044343, within the IL33 gene, and rs2058660, rs2310173 and rs13015714, within the IL1RL1 gene, previously associated with immune-related diseases, were genotyped using predesigned TaqMan assays. RESULTS: A consistent association between the rs7025417 polymorphism and GCA was evident in the overall meta-analysis, under both allele (P(MH) = 0.041, OR = 0.88, CI 95% 0.78-0.99) and recessive (P(MH) = 3.40E-03, OR = 0.53, CI 95% 0.35-0.80) models. No statistically significant differences between allele or genotype frequencies for the other IL33 and IL1RL1 genetic variants were detected in this pooled analysis. CONCLUSIONS: Our results clearly evidenced the implication of the IL33 rs7025417 polymorphism in the genetic network underlying GCA

    CTLA4 is expressed on mature dendritic cells derived from human monocytes and influences their maturation and antigen presentation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dendritic cells (DCs) initiate immune responses through their direct interaction with effector cells. However, the mechanism by which DC activity is regulated is not well defined. Previous studies have shown that CTLA4 on T cells regulates DCs function by "cross-talk". We investigated whether there is an intrinsic regulatory mechanism in DCs, with CTLA4 as a candidate regulator.</p> <p>Results</p> <p>We confirmed via RT-PCR and flow cytometry the natural expression of CTLA4 on mature DCs derived from human monocytes. Approximately 8% CD1a-positive cells express CTLA4 both on surface and intracellular, whereas 10% CD1a-negative cells express CTLA4 intracellularly, but little expression was observed on the cell surface. The cross-linking of CTLA4 inhibits DCs maturation and antigen presentation in vitro, but does not inhibit endocytosis.</p> <p>Conclusions</p> <p>CTLA4 is expressed by DCs and plays an inhibitory role. CTLA4-expressing DCs may represent a group of regulatory DCs. Because of its wide distribution on different cell types, CTLA4 may play a general role in regulating immune responses.</p
    corecore