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Abstract 

Fluorescence characteristics of a biologically active natural alkaloid, luotonin A (LuA) was 

studied by steady-state and time-resolved spectroscopic methods. The rate constant of the 

radiationless deactivation from the singlet-excited state diminished by more than one order of 

magnitude when the solvent polarity was changed from toluene to water. Dual emission was 

found in polyfluorinated alcohols of large hydrogen bond donating power due to 

photoinitiated proton displacement along the hydrogen bond. In CH2Cl2, LuA produced both 

1:1 and 1:2 hydrogen-bonded complexes with hexafluoro-2-propanol (HFIP) in the ground 

state. Photoexcitation of the 1:2 complex led to protonated LuA, whose fluorescence 

appeared at long wavelength. LuA served as a bidentate ligand forming 1:1 complexes with 

metal ions in acetonitrile. The stability of the complexes diminished in the series of Cd
2+

 > 

Zn
2+

 > Ag
+
, and upon competitive binding of water to the metal cations. The effect of chelate 

formation on the fluorescent properties was revealed. 

 

 

Key words: photoinduced protonation, dual fluorescence, chelate, excited-state deactivation, 
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1. Introduction 

Compounds composed of at least two nitrogen-heterocyclic rings have received considerable 

attention due to their versatile photophysical properties.
1-6

 Light absorption of these species 

altered the charge density on the heteroatoms inducing considerable change in the acid-base 

strength. Consequently, photoinduced proton transfer or excited-state tautomerization could 

occur.
7-10

 The effect of hydrogen bonding on the competition among the various deactivation 

pathways of excited azacarbazole alkaloids
11-16

_ENREF_11_ENREF_11 was revealed. The 

interaction with hydrogen bond acceptors and donors also led to substantial variation in the 

fluorescence characteristics of a pyridocarbazole alkaloid, ellipticine.
17-19

 It was demonstrated 

that its dual fluorescence in methanol arose from excited state intermolecular proton transfer 

from the solvent to the nitrogen of the six-membered heterocyclic ring of the fluorophore.
19,20

  

In the present work, we focused on the fluorescent behavior of luotonin A (LuA). This 

is a natural pyrroloquinazolinoquinoline alkaloid (Scheme1) isolated from the Chinese plant 

Peganum nigellastrum, which has been used for the treatment of rheumatism, abscess, and 

inflammation.
21,22

 LuA also has antitumor activity,
23,24

 and inhibits human DNA 

topoisomerase I enzyme.
25

 Its _ENREF_1molecular structure resembles that of camptothecin 

derivatives employed in cancer chemotherapy.
26

 Several routes have been developed for the 

synthesis of LuA and its analogues.
27-29

 These compounds bind to the minor grove of the 

double-stranded DNA with equilibrium constants 220-1300 M
1

 leading to fluorescence 

quenching.
30

 LuA derivatives can be quantified by HPLC separation, and fluorimetric 

detection in human serum.
31

 

 Despite the biomedical importance of luotonin A, only very few information is 

available on its photophysical properties. The solvent, substituent and pH dependence of the 

fluorescence characteristics have been explored,
32

 but time-resolved fluorescence 

measurements have not been performed. In the present paper, we reveal how the solvent 
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polarity and strong hydrogen bonding affect the kinetics of excited-state deactivation, and 

demonstrate that LuA can serve as a chelating agent for metal ions. 

 

2. Experimental 

Luotonin A (LuA) (Sigma), polyfluorinated alcohols (Aldrich) and metal salts (Aldrich) were 

used without further purification. Fluorescence quantum yields (f) were determined relative 

to that of quinine sulfate in 0.5 M H2SO4 solution, for which a reference yield of f  = 0.546 

was taken.
33

 The UV-visible absorption spectra were recorded on a Unicam UV 500 

spectrophotometer. Corrected fluorescence spectra were obtained on a Jobin-Yvon 

Fluoromax-P spectrofluorometer. Fluorescence decays were measured with a time-correlated 

single-photon counting technique on a previously described apparatus.
34

 Data were analyzed 

by a non-linear least-squares deconvolution method with Picoquant FluoFit software. All 

measurements were performed in air-saturated solutions at 297±2 K. The number of linearly 

independent absorbing or emitting species was determined by matrix rank analysis 

employing the program MRA 3.11 developed by Peintler et al.
35

 The program can be 

downloaded from http://www.staff.u-szeged.hu/~peintler/enindex.htm. The concentration of 

LuA was measured spectrophotometrically using the molar absorption coefficient of = 

16860 M
1

 cm
1

 at 358 nm in acetonitrile. This value agrees well with log / M
-1

 cm
-1

  = 4.21 

found in methanol.
21

 

 

3. Results and discussion 

Solvent effect on photophysical parameters 

The quantum yield (f) and lifetime (f) of the fluorescence of LuA exhibited marked solvent 

dependence (Table 1). As a measure of solvent polarity, N

TE  parameter
36

 was used. One order 

of magnitudes increase in f was observed when the solvent was changed from toluene to 



 5 

water reaching a value of 0.46. A concomitant significant lengthening of f was also 

obtained. The f data found in this work in ethanol and acetonitrile are in accordance with 

the reported values,
32

 whereas our result in water is somewhat larger than f = 0.314, the 

value previously found
32

 at pH 5.5. The rate constants of fluorescence emission (kf) and 

radiationless deactivation (knr) from the singlet excited state were calculated using kf =f/f 

and knr = (1f)/f relationships. The former quantity slightly diminished with the growth of 

the solvent polarity, while knr significantly decreased indicating that the radiationless 

deactivation was more sensitive to the polarity and hydrogen bond donor ability of the 

microenvironment. The solvent dependence of knr of LuA proved to be much larger than that 

of the structurally related alkaloid, camptothecin.
37

 For the latter compound, knr diminished 

only by a factor about 2 from cyclohexane (knr = 1.91 × 10
8
 s
1

) to water (knr = 0.90 × 10
8
 s

-1
). 

The quicker radiationless energy dissipation in nonpolar medium was attributed to the more 

efficient vibronic interaction between the close-lying S1(

 and S2(n


 excited states.

37
 

Lim demonstrated for many nitrogen heterocyclic and aromatic carbonyl compounds that 

vibronic coupling between nearby 

and n


 singlet states induced a very efficient internal 

conversion.
38

 This phenomenon is widely known as ”proximity effect”. Both hydrogen 

bonding and solvent polarity growth displace the 

states toward lower energy, whereas the 

n

states are moved to higher energy. Consequently, the S1(


S2(n


energy gap in LuA 

increases with polarity leading thereby to reduced coupling between the two excited states, 

which decelerates internal conversion. The more rapid radiationless depopulation of the 

singlet-excited LuA compared to camptothecin suggests that the energy difference between 

S1(

and S2(n


 states is smaller in the former alkaloid. The much smaller knr of LuA in 

water than in ethanol reflects the more substantial effect of the stronger dipole-dipole and 

hydrogen bonding interactions on the S1(

S2(n


energy gap in aqueous medium. 
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 LuA exhibited entirely different behavior in solvents of large hydrogen bond donating 

ability. As seen in Figure 1, dual emission was observed in 2,2,2-trifluoroethanol (TFE) and 

1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). The excitation spectra were identical irrespective 

of the detection wavelength, and corresponded to the absorption spectrum. The long-

wavelength band resembled that reported for protonated luotonin A (LuAH
+
) in acidic 

aqueous solution.
32

 Thus, we conclude that hydrogen bonding promoted the photoinduced 

protonation of LuA in TFE and HFIP. Since this process was more efficient in a solvent of 

larger hydrogen bond donating power, more intense long-wavelength emission was detected 

in HFIP. Abraham’s hydrogen bond acidity parameters ( ) are 0.35, 0.57 and 0.77 for 

water, TFE and HFIP, respectively.
39,40

 The growth of in this series indicates the 

strengthening of the hydrogen bond with the solute and the rising ability of the solvents to 

donate proton along the hydrogen bond. The absorption spectra of LuA in TFE and HFIP 

barely differ from those in other solvents indicating that LuA is not protonated in the ground 

state.  

 

Effect of hydrogen bonding in CH2Cl2 

To gain insight into the details of the photophysical processes initiated by hydrogen bonding, 

the effect of HFIP was examined in CH2Cl2. The gradual addition of HFIP brought about a 

bathochromic shift in the absorption spectrum, and isosbestic points developed at 331, 341, 

359 and 364 nm in the 0-0.06 M HFIP range (Figure 2A). At larger HFIP concentrations, 

further spectral changes were observed and the isosbestic points blurred suggesting that not 

only 1:1 binding occurred. The protonation of LuA in the ground state was excluded, because 

the spectrum did not extend above 390 nm, where LuAH
+
 absorbs light.

32
  

The equilibrium constants of 1:1 (K1) and 1:2 (K2) complexes were calculated by global 

analysis of the experimental results in the 330-390 nm range. Since HFIP was added in a large 

excess compared to LuA, the absorbance change was described by the function: 
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where 0 , 1  and 2  are the molar absorption coefficients at a particular wavelength () for 

free LuA, 1:1 and 1:2 complexes, respectively. A
0
 and A denote the absorbances in the 

absence and the presence of HFIP. The nonlinear least squares fit provides K1 = 73 M
1

 and 

K2 = 3 M
1

 for the binding constant of the consecutive two steps of complexation. The lines in 

Figure 2B present the calculated data.  

 Addition of 0-0.06 M HFIP to LuA in CH2Cl2 caused a considerable fluorescence 

enhancement, and about 14 nm red-shift of the fluorescence maximum due to 1:1 hydrogen 

bonding. Further increase of HFIP concentration led to quenching of this band accompanied 

by the emergence of a new emission centered at 515 nm with an isoemissive point at 473 nm 

(Figure 3). The long-wavelength fluorescence band was assigned to protonated luotonin A 

(LuAH
+
) because it matched the spectrum of LuAH

+
 in 0.04 M trifluoroacetic acid CH2Cl2 

solution. Similar spectra have been reported for protonated LuA derivatives in water.
32

 

To gain insight into the kinetics of photoinitiated processes, time-resolved 

measurements were performed. The deduced reaction mechanism is presented in Scheme 2. 

Three fluorescence components were detected at 400 nm, whose 0.37, 1.4 and 0.70 ns 

lifetimes were independent of HFIP concentration implying that no dynamic quenching 

occurred. The shortest-lived component (1 = 0.37 ns) was attributed to the uncomplexed LuA 

because the same decay time was obtained in neat CH2Cl2. The gradual increase of HFIP 

concentration diminished the amplitude of LuA emission (a1), and strengthened the 

fluorescence of 2 = 1.4 ns. Since these changes occurred parallel to the alteration of the 

absorption and fluorescence spectra in the 0-0.06 M HFIP concentration range (vide supra), 2 

was assigned to the fluorescence of 1:1 hydrogen-bond complex. The amplitude of this 

emission (a2) reached a maximum in the presence of about 0.06 M HFIP, and then declined 
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due to the growth of the intensity of the emission of 3 = 0.70 ns. The latter component 

originated from 1:2 complex. Figure 4 presents the variation of the relative amplitudes 

(an/∑|an|) with HFIP concentration.  

The long-wavelength emission was examined at 550 nm, where the uncomplexed LuA 

weakly fluoresces. Since the tail of the short-wavelength band extends beyond 550 nm, the 

fluorescence of 1:1 complex with 1.4 ns lifetime could be detected. In addition, LuAH
+
 

emission was detected with 0.7 ns rise time and 4.6 ns decay time. The build-up of LuAH
+
 

fluorescence corresponded to the lifetime of the singlet-excited 1:2 complex indicating that 

the transformation of the 1:2 complex to LuAH
+ 

occurred predominantly in the singlet-excited 

state. The amplitudes of the rise and decay of LuAH
+
 fluorescence showed no systematic 

differences apart from their opposite sign (Figure 4B) suggesting that LuAH
+ 

was produced 

by proton transfer within the excited 1:2 complex. The very small absorption above 400 nm 

also implied that insignificant amount of LuAH
+ 

was formed in the ground state. The opposite 

change of the amplitudes of the decay components possessing 2 = 1.4 ns and 3 = 0.70 ns 

originated from the conversion of 1:1 complex to 1:2 complex in the ground state upon 

increase of HFIP concentration. The photoexcitation of the latter species led to LuAH
+
. 

When the much weaker hydrogen bond donor TFE was used as additive in CH2Cl2, the 

fluorescence maximum of LuA shifted from 400 to 410 nm in 0.4 M TFE solution, and a 

2.23-fold increase in f was observed. However, no long-wavelength band emerged, and the 

lifetime was 1.0 ns irrespective of the detection wavelength. These implied that no 

photoinduced proton transfer took place within LuA-TFE hydrogen bond complex. The 

fluorescence quantum yield enhancement arose from the decelerated radiationless 

deactivation of the excited hydrogen bond complex. The small alteration of the absorption 

spectrum indicated hydrogen bonding in the ground state.  
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Complexation with Cd
2+

 and Zn
2+

 ions 

As shown in Figure 5, addition of Cd(ClO4)2 to LuA in acetonitrile resulted in the emergence 

of a new red-shifted band in both the absorption and fluorescence spectra. The isosbestic 

points at 251, 276.5 and 346 nm, as well as the isoemissive point at 416 nm suggested that 1:1 

complexation occurred under our experimental condition. LuA acted as a bidentate ligand 

binding with its nitrogens located at the 5- and 6-positions to the metal ion. The equilibrium 

constant (K) was determined from the absorbance (A) change with cation concentration using 

the following relationship:
41
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where [LuA]0 represents the initial alkaloid concentration, whereas A∞ and A0 denote the 

absorbance of the fully complexed and free LuA, respectively. The global nonlinear least-

squares fit of the experimental data gave K = 8300 M
1

 for 1:1 association of Cd
2+

 with LuA. 

Similar analysis of the fluorescence titration data provided K = 7700 M
1

 in fair agreement 

with the results derived from the absorption spectra. The insets to Figure 5 demonstrate that 

the calculated functions match the experimental data. 

Addition of Zn(NO3)2 caused a similar spectral change, but the driving force of Zn
2+

 

complexation was significantly smaller than that of Cd
2+

. The equilibrium constants derived 

from spectrophotometric and fluorescence spectroscopic titrations are summarized in Table 2. 

The larger stability of the Cd
2+

 complex may originate partly from the better match of the ion 

size and the structural features of LuA compared to the smaller Zn
2+

. The weaker solvent-

solute interaction with the bulkier Cd
2+

 also contributed to its larger binding affinity. The 

quantum yields and lifetimes of fluorescence were 0.13 and 0.94 ns for Cd
2+

-LuA, whereas 

0.25 and 2.4 ns were found for Zn
2+

-LuA. The difference in these photophysical parameters 



 10 

may stem primarily from the more substantial heavy atom effect of Cd
2+

, which promoted 

more rapid radiationless deactivation from the singlet-excited state. 

To confirm the number of light absorbing and fluorescent species, matrix rank analysis 

of the spectra was carried out. The residual absorbance and fluorescence intensity curves 

exhibited random distribution in the case of two absorbing or fluorescent species implying 

that LuA produced only 1:1 complex with Cd
2+

 and Zn
2+

 under the conditions of our studies. 

 

Solvent effect on the stability and fluorescence of metal complexes 

To reveal how the interaction with solvent influences the stability and fluorescent 

characteristics of LuA complexes, experiments were performed in acetonitrile-water mixtures. 

Figure 6A displays the variation of the fluorescence spectrum of Zn
2+

-LuA with the water 

content of the medium. The diminution of the intensity of the complex emission was 

accompanied by the rise of the blue-shifted free LuA fluorescence upon progressive addition 

of water. This suggested that the metal complex became less stable when the water content of 

the solution was increased. The growth of the fluorescence intensity after the complete 

disappearance of Zn
2+

-LuA was in accordance with the fluorescence quantum yield 

enhancement of LuA in polar hydrogen bonding medium (vide supra).  

The gradual dissociation of Zn
2+

-LuA with increasing water concentration was also 

followed by time-resolved measurements. The single-exponential fluorescence decay in Zn
2+

-

LuA solution turned to dual-exponential upon addition of water. The lifetime of the excited 

Zn
2+

-LuA complex remained constant (2.4 ns), and the diminution of the amplitude of this 

fluorescence component with growing water concentration was accompanied by the 

emergence of a shorter-lived emission (Figure 6B). This fluorescence component was 

attributed to free LuA because it had practically identical decay kinetics to that of LuA in the 

corresponding acetonitrile-water mixture. The fluorescence lifetime was significantly 

lengthened by water for uncomplexed LuA (Figure 6C) due to the deceleration of the rate of 
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radiationless deactivation from the singlet-excited state, but remained unaltered in the case of 

Zn
2+

-LuA. The relative amplitude of Zn
2+

-LuA fluorescence gradually lessened and 

completely vanished in the presence of around 7 M water (Figure 6B) because coordination of 

water to Zn
2+ 

and hydrogen bonding with the heterocyclic nitrogens located at 5- and 6-

positions of LuA efficiently competed with Zn
2+

-LuA formation. 

 Addition of water affected the fluorescent properties of Cd
2+

-LuA analogously to that 

found for Zn
2+

-LuA, but the changes occurred at larger water concentration. Figure 7 

demonstrates that more water is needed to eliminate the binding of Cd
2+

 to LuA. The 

difference in the affinity to water is due to the 47.8 kJ mol
1

 less negative free energy of 

hydration
42,43

 for Cd
2+

 compared to that of Zn
2+

. The equilibrium constant of Cd
2+

 complex 

formation (K) is about 30-fold smaller in the presence of 3.5 M water than in neat acetonitrile, 

whereas 22-fold diminution in K takes place in ethanol compared to the value in acetonitrile 

(Table 2). The difference in K values results primarily from the lessening of the Gibbs free 

energy of Cd
2+

 solvation in the series of acetonitrile, ethanol and water.
44

  

 

Ag
+
 binding 

Complexation with Ag
+
 brought about similar alteration in the absorption spectrum of LuA to 

that shown in Figure 5A, but the binding affinity was significantly lower than in the case of 

Cd
2+

 (Table 2). Ag
+
 quenched the fluorescence of LuA without altering the shape of the 

fluorescence spectrum (Figure 8). The lack of a new band implied that Ag
+
-LuA was non-

fluorescent. Excited state charge transfer within the complex probably induced efficient 

radiationless energy dissipation. The reciprocal emission intensity exhibited an excellent 

linear correlation as a function of Ag
+
 concentration. The invariant fluorescence lifetime 

suggested that no dynamic quenching occurred. Thus, the slope of the Stern-Volmer plot (510 

M
1

) corresponded to the equilibrium constant of Ag
+ 

association with LuA in the ground 



 12 

state. The results of the nonlinear least-squares analysis of the absorption and fluorescence 

data are given in Table 2. In contrast to the considerable water effect on the binding affinity of 

Cd
2+

 and Zn
2+

, the stability of Ag
+
-LuA complex decreased only a small extent upon addition 

of 3.5 M water. The different behavior was ascribed to the strong preferential solvation of the 

monovalent ions by acetonitrile, whereas the divalent ions were preferentially solvated by the 

water component in water-acetonitrile mixtures.
45

 It was demonstrated that the standard molar 

free energies of the transfer of ions from acetonitrile to water are 23.2, 42.2 and 68.7 

kJmol
1

 for Ag
+
, Cd

2+
 and Zn

2+
, respectively.

44
 The substantial rise of exothermicity explains 

the increase of water sensitivity of the LuA complexes in the series of these cations. The 

strength of the coordination of water to metal cation is the dominant factor controlling the 

driving force of metal complex formation. The hydrogen bonding of LuA to water has less 

significant influence.  

 

4. Conclusions 

The fluorescence properties of LuA were sensitive to the bulk polarity of the 

microenvironment and specific hydrogen bonding interactions alike. The increase of the 

former factor decelerated the radiationless deactivation from the singlet-excited state, whereas 

the latter effect facilitated photoinduced proton transfer in solvents of strong hydrogen bond 

donor character. Binding of at least two HFIP was needed to bring about proton transfer to 

singlet-excited LuA. The formation of 1:1 complex with metal ions in acetonitrile 

significantly altered the fluorescence of LuA. Ag
+
-LuA proved to be nonemitting. The 

quantum yield and lifetime of the fluorescence were larger for Zn
2+

-LuA than the 

corresponding values of Cd
2+

-LuA, but the binding affinity exhibited reverse trend. 

Coordination of water to the metal ions influenced the stability of chelates much more 

significantly than the hydrogen bonding with LuA. The results may be utilized in the design 

of fluorescent probes for selective detection of Ag
+
, Zn

2+
 or Cd

2+
 cations. 
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Scheme 1. The formula of luotonin A 

 

 

 

 

 

 

 
 

 

 

Scheme 2. Reaction steps in the presence of hexafluoro-2-propanol (ROH) in CH2Cl2 

 

n = 4, 
6, 8 
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Table 1. Photophysical properties of luotonin A in solvents of different polarity 

 

Solvent N

TE
 f f / ns kf / 10

8
 s
1

 knr / 10
8
 s
1

 

toluene 0.099
a 

0.046 0.15 3.1 64 

CH2Cl2 0.309
a 

0.098 0.37 2.6 24 

CH3CN 0.460
a 

0.082 0.43 1.9 21 

CH3CH2OH 0.654
a 

0.10 0.54 1.9 17 

H2O 1
a 

0.46 2.7 1.7 2.0 
a
 Solvent polarity parameters

36
 

 

 

 

 

 

Table 2. Equilibrium constants and fluorescence lifetimes of metal ion-LuA complexes in 

various solvents 

Additive Solvent K / M
-1 

from absorption 

K / M
-1 

from fluorescence 
f / ns 

Cd(ClO4)2 CH3CN 8300 7700 0.94 

Cd(ClO4)2 CH3CN + 3.5 M H2O 250 260 1.1 

CdCl2 EtOH 350 380 1.1 

Zn(NO3)2 CH3CN 1100 1100 2.4 

Zn(NO3)2 CH3CN + 3.5 M H2O 
a a a 

AgNO3 CH3CN 490 510 
b 

AgNO3 CH3CN + 3.5 M H2O 430 460 
b 

a
 negligible binding affinity, 

b
 nonfluorescent complex 
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Figure 1. Absorption and fluorescence spectra of LuA in TFE (thick line) and HFIP (thin 

line). 
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Figure 2. (A) Absorption spectrum of LuA in the presence of 0, 7.9, 16, 24 and 32 mM HFIP 

in in CH2Cl2. Inset: [HFIP] = 0.032, 0.094, 0.22, 0.41 and 0.59 M. (B) Absorbance change at 

345 (■), 362 (●) and 373 nm (▲). The lines show the fitted function. 
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Figure 3. Fluorescence spectrum of LuA in the presence of 0, 2.4, 4,8, 9.5, 19, 42 and 65 

mM HFIP in in CH2Cl2. Inset: [HFIP] = 0.10, 0.22, 0.30, 0.40, 0.49 and 0.58 M. Excitation 

wavelength (exc) is 358 nm. 
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Figure 4. Variation of the relative amplitudes of the fluorescence decay components as a 

function of HFIP concentration in CH2Cl2. Detection at 400 nm (A) and 550 nm (B). 
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Figure 5. (A) Effect of 0, 0.037, 0.11, 0.26, 0.60, 1.2 and 6.5 mM Cd(ClO4)2 on the 

absorption spectrum of 8.35 M LuA in CH3CN. Inset displays the absorbances at 260 (■) 

and 375 nm (▼) and the lines are the result of nonlinear least-squares fit. (B) Alteration of 

the fluorescence spectrum of 7.3 M LuA upon addition of 0, 0.012, 0.037, 0.061, 0.097, 

0.17, 0.26, 0.49, 1.0 and 4.9 mM Cd(ClO4)2 in CH3CN. Inset shows the fluorescence 

intensity at 405 (■) and 445 nm (▼) and the lines represent the best fit. 
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Figure 6. (A) Change of the fluorescence spectra of Zn
2+

-LuA complex upon addition of 0, 

0.55, 1.4, 2.4, 3.6, 6.8, 12 and 19 M water in CH3CN. ([LuA] = 8.2 M, [Zn
2+

] = 0.02 M, 

exc=346 nm) The thick dashed line presents the fluorescence spectrum of LuA in CH3CN + 

6.8 M water mixture in the absence of Zn
2+

. Relative amplitudes (B) and the fluorescence 

lifetime (C) of uncomplexed LuA as a function of water concentration in acetonitrile 

containing 8.2 M LuA + 0.01 M Zn
2+

. The triangles display the lifetimes in the absence of 

Zn
2+

.  
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Figure 7. Difference of the fluorescence intensities at 460 nm in the presence and absence of 

0.02 M Cd
2+

 (▲) or Zn
2+

 (■) as a function of water concentration in CH3CN. ([LuA] = 8.2 

M, exc=346 nm) 

 

350 400 450 500 550 600
0.0

0.3

0.6

0.9

 

 

In
te

n
s
it
y

Wavelength / nm

0 5 10 15 20
0

3

6

9

I 0
/ 
I 

[AgNO
3
] / mM

 

Figure 8. Quenching of the fluorescence of 6.4 M LuA by 0, 0.18, 0.65, 1.1, 1.9, 3.4, 5.2, 

8.5 and 20 mM Ag
+
 in CH3CN. Inset presents the Stern-Volmer plot of the fluorescence 

intensity at 410 nm. (exc=346 nm) 
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Graphical Abstract 

 

 

The fluorescence of luotonin A is very sensitive to hydrogen bonding and chelate formation. 

 


