574 research outputs found

    Neutron beam test of CsI crystal for dark matter search

    Full text link
    We have studied the response of Tl-doped and Na-doped CsI crystals to nuclear recoils and Îł\gamma's below 10 keV. The response of CsI crystals to nuclear recoil was studied with mono-energetic neutrons produced by the 3^3H(p,n)3^3He reaction. This was compared to the response to Compton electrons scattered by 662 keV Îł\gamma-ray. Pulse shape discrimination between the response to these Îł\gamma's and nuclear recoils was studied, and quality factors were estimated. The quenching factors for nuclear recoils were derived for both CsI(Na) and CsI(Tl) crystals.Comment: 21pages, 14figures, submitted to NIM

    Measurement of cosmic-ray low-energy antiproton spectrum with the first BESS-Polar Antarctic flight

    Full text link
    The BESS-Polar spectrometer had its first successful balloon flight over Antarctica in December 2004. During the 8.5-day long-duration flight, almost 0.9 billion events were recorded and 1,520 antiprotons were detected in the energy range 0.1-4.2 GeV. In this paper, we report the antiproton spectrum obtained, discuss the origin of cosmic-ray antiprotons, and use antiprotons to probe the effect of charge sign dependent drift in the solar modulation.Comment: 18 pages, 1 table, 5 figures, submitted to Physics Letters

    Wear and damage transitions of wheel and rail materials under various contact conditions

    Get PDF
    This study discusses a TÎł/A method of plotting wear data from a twin-disc machine for identifying the wear and damage transitions of wheel and rail materials. As found in previous work, three wear regimes (mild wear, severe wear and catastrophic wear) of U71Mn rail material were identified in dry rolling-sliding contact tests. It was determined that the damage mechanism transforms in the different wear regimes. Here earlier studies were extended to establish wear behavior for the presence of a number of third body materials (oil, water, friction enhancers) and a rail cladding process designed to make wheels and rails more durable. This has provided much needed data for Multi-Body Dynamics (MBD) simulations, and will allow better predictions of profile evolution of wheel and rail over a wider range of conditions

    Performance of the CREAM calorimeter in accelerator beam test

    Get PDF
    The CREAM calorimeter, designed to measure the spectra of cosmic-ray nuclei from under 1 TeV to 1000 TeV, is a 20 radiation length (X0) deep sampling calorimeter. The calorimeter is comprised of 20 layers of tungsten interleaved with 20 layers of scintillating fiber ribbons, and is preceded by a pair of graphite interaction targets providing about 0.42 proton interaction lengths (\lambda int). The calorimeter was placed in one of CERN's SPS accelerator beams for calibration and testing. Beams of 150 GeV electrons were used for calibration, and a variety of electron, proton, and nuclear fragment beams were used to test the simulation model of the detector. In this paper we discuss the performance of the calorimeter in the electron beam and compare electron beam data with simulation results.The CREAM calorimeter, designed to measure the spectra of cosmic-ray nuclei from under 1 TeV to 1000 TeV, is a 20 radiation length (X0) deep sampling calorimeter. The calorimeter is comprised of 20 layers of tungsten interleaved with 20 layers of scintillating fiber ribbons, and is preceded by a pair of graphite interaction targets providing about 0.42 proton interaction lengths (\lambda int). The calorimeter was placed in one of CERN's SPS accelerator beams for calibration and testing. Beams of 150 GeV electrons were used for calibration, and a variety of electron, proton, and nuclear fragment beams were used to test the simulation model of the detector. In this paper we discuss the performance of the calorimeter in the electron beam and compare electron beam data with simulation results

    A Cherenkov imager for charge measurements of Nuclear Cosmic Rays in the CREAM II instrument

    No full text
    A proximity focusing Cherenkov imager for the charge measurement of nuclear cosmic rays in the CREAM II instrument, called CHERCAM, is under construction. This imager consists of a silica aerogel radiator plane facing a detector plane equipped with standard photomultipliers. The two planes are separated by a minimal ring expansion gap. The Cherenkov light yield is proportional to the squared charge of the detected particle. The expected relative light collection accuracy is in the few percents range. It should lead to single element separation over the range of nuclear charge Z of main interest 1 leqleq Z <<\approx$ 26

    CHERCAM: the Cherenkov imager of the CREAM experiment, results in Z=1 test beams

    No full text
    International audienceThe CREAM experiment investigates the high energy spectrum of nuclear elements from H to Fe in the cosmic ray flux up to 101510^{15} eV, with an instrument designed to achieve individual elements separation over the whole mass range. A proximity focused Cherenkov imager, CHERCAM (CHERenkov CAMera), will provide both a good topological signature (Cherenkov ring) for downgoing Z=1 particles, and a charge independent individual element separation through the considered range of nuclear charges. It will be implemented in the forthcoming CREAM flight 3. The contribution reports on the CHERCAM main features and on the preliminary results from in-beam tests at CERN

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV

    Get PDF
    Isolated photon production is measured in proton-proton and lead-lead collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80 GeV with the CMS detector at the LHC. The measured ET spectra are found to be in good agreement with next-to-leading-order perturbative QCD predictions. The ratio of PbPb to pp isolated photon ET-differential yields, scaled by the number of incoherent nucleon-nucleon collisions, is consistent with unity for all PbPb reaction centralities.Comment: Submitted to Physics Letters

    Pharmacognostical Sources of Popular Medicine To Treat Alzheimer’s Disease

    Get PDF

    Nanoparticles for Applications in Cellular Imaging

    Get PDF
    In the following review we discuss several types of nanoparticles (such as TiO2, quantum dots, and gold nanoparticles) and their impact on the ability to image biological components in fixed cells. The review also discusses factors influencing nanoparticle imaging and uptake in live cells in vitro. Due to their unique size-dependent properties nanoparticles offer numerous advantages over traditional dyes and proteins. For example, the photostability, narrow emission peak, and ability to rationally modify both the size and surface chemistry of Quantum Dots allow for simultaneous analyses of multiple targets within the same cell. On the other hand, the surface characteristics of nanometer sized TiO2allow efficient conjugation to nucleic acids which enables their retention in specific subcellular compartments. We discuss cellular uptake mechanisms for the internalization of nanoparticles and studies showing the influence of nanoparticle size and charge and the cell type targeted on nanoparticle uptake. The predominant nanoparticle uptake mechanisms include clathrin-dependent mechanisms, macropinocytosis, and phagocytosis
    • …
    corecore