26 research outputs found

    A boundary exchange influence on deglacial neodymium isotope records from the deep western Indian Ocean

    Get PDF
    The use of neodymium (Nd) isotopes to reconstruct past water mass mixing relies upon the quasi-conservative behaviour of this tracer, whereas recent studies in the modern oceans have suggested that boundary exchange, involving the addition of Nd from ocean margin sediments, may be an important process in the Nd cycle. Here we suggest that the relative importance of water mass advection versus boundary exchange can be assessed where the deep western boundary current in the Indian Ocean flows past the Madagascan continental margin; a potential source of highly unradiogenic Nd. Foraminiferal coatings and bulk sediment reductive leachates are used to reconstruct bottom water Nd isotopic composition (εNd) in 8 Holocene age coretops, with excellent agreement between the two methods. These data record spatial variability of ∼4 εNd units along the flow path of Circumpolar Deep Water; εNd≈−8.8 in the deep southern inflow upstream of Madagascar, which evolves towards εNd≈−11.5 offshore northern Madagascar, whereas εNd≈−7.3 where deep water re-circulates in the eastern Mascarene Basin. This variability is attributed to boundary exchange and, together with measurements of detrital sediment εNd, an isotope mass balance suggests a deep water residence time for Nd of ≤400 yr along the Madagascan margin. Considering deglacial changes, a core in the deep inflow upstream of Madagascar records εNd changes that agree with previous reconstructions of the Circumpolar Deep Water composition in the Southern Ocean, consistent with a control by water mass advection and perhaps indicating a longer residence time for Nd in the open ocean away from local sediment inputs. In contrast, sites along the Madagascan margin record offset εNd values and reduced glacial–interglacial variability, underlining the importance of detecting boundary exchange before inferring water mass source changes from Nd isotope records. The extent of Madagascan boundary exchange appears to be unchanged between the Holocene and Late Glacial periods, while a consistent shift towards more radiogenic εNd values at all sites in the Late Glacial compared to the Holocene may represent a muted signal of a change in water mass source or composition

    Reactivity of neodymium carriers in deep sea sediments: Implications for boundary exchange and paleoceanography

    Get PDF
    The dissolved neodymium (Nd) isotopic distribution in the deep oceans is determined by continental weathering inputs, water mass advection, and boundary exchange between particulate and dissolved fractions. Reconstructions of past Nd isotopic variability may therefore provide evidence on temporal changes in continental weathering inputs and/or ocean circulation patterns over a range of timescales. However, such an approach is limited by uncertainty in the mechanisms and importance of the boundary exchange process, and the challenge in reliably recovering past seawater Nd isotopic composition (εNd) from deep sea sediments. This study addresses these questions by investigating the processes involved in particulate–solution interactions and their impact on Nd isotopes. A better understanding of boundary exchange also has wider implications for the oceanic cycling and budgets of other particle-reactive elements. Sequential acid-reductive leaching experiments at pH ∼2–5 on deep sea sediments from the western Indian Ocean enable us to investigate natural boundary exchange processes over a timescale appropriate to laboratory experiments. We provide evidence that both the dissolution of solid phases and exchange processes influence the εNd of leachates, which suggests that both processes may contribute to boundary exchange. We use major element and rare earth element (REE) data to investigate the pools of Nd that are accessed and demonstrate that sediment leachate εNd values cannot always be explained by admixture between an authigenic component and the bulk detrital component. For example, in core WIND 24B, acid-reductive leaching generates εNd values between −11 and −6 as a function of solution/solid ratios and leaching times, whereas the authigenic components have εNd ≈ −11 and the bulk detrital component has εNd ≈ −15. We infer that leaching in the Mascarene Basin accesses authigenic components and a minor radiogenic volcanic component that is more reactive than Madagascan-derived clays. The preferential mobilisation of such a minor component demonstrates that the Nd released by boundary exchange could often have a significantly different εNd composition than the bulk detrital sediment. These experiments further demonstrate certain limitations on the use of acid-reductive leaching to extract the εNd composition of the authigenic fraction of bulk deep sea sediments. For example, the detrital component may contain a reactive fraction which is also acid-extractible, while the incongruent nature of this dissolution suggests that it is often inappropriate to use the bulk detrital sediment elemental chemistry and/or εNd composition when assessing possible detrital contamination of leachates. Based on the highly systematic controls observed, and evidence from REE patterns on the phases extracted, we suggest two approaches that lead to the most reliable extraction of the authigenic εNd component and good agreement with foraminiferal-based approaches; either (i) leaching of sediments without a prior decarbonation step, or (ii) the use of short leaching times and low solution/solid ratios throughout

    Aerosols Transmit Prions to Immunocompetent and Immunodeficient Mice

    Get PDF
    Prions, the agents causing transmissible spongiform encephalopathies, colonize the brain of hosts after oral, parenteral, intralingual, or even transdermal uptake. However, prions are not generally considered to be airborne. Here we report that inbred and crossbred wild-type mice, as well as tga20 transgenic mice overexpressing PrPC, efficiently develop scrapie upon exposure to aerosolized prions. NSE-PrP transgenic mice, which express PrPC selectively in neurons, were also susceptible to airborne prions. Aerogenic infection occurred also in mice lacking B- and T-lymphocytes, NK-cells, follicular dendritic cells or complement components. Brains of diseased mice contained PrPSc and transmitted scrapie when inoculated into further mice. We conclude that aerogenic exposure to prions is very efficacious and can lead to direct invasion of neural pathways without an obligatory replicative phase in lymphoid organs. This previously unappreciated risk for airborne prion transmission may warrant re-thinking on prion biosafety guidelines in research and diagnostic laboratories

    Laboratory measurement of optical constants of solid SiO and application to circumstellar dust

    No full text
    Context. Silicate minerals belong to the most abundant solids that form in cosmic environments. Their formation requires that a sufficient number of oxygen atoms per silicon atom are freely available. For the standard cosmic element mixture this can usually be taken for granted, but it becomes a problem at the transition from the oxygen-rich chemistry of M-stars to the carbon-rich chemistry of C-stars. In the intermediate type S-stars, most of the oxygen and carbon is consumed by formation of CO and SiO molecules, and left-over oxygen to build SiO4-tetrahedrons in solids becomes scarce. Under such conditions SiO molecules from the gas phase may condense into solid SiO. The infrared absorption spectrum of solid SiO differs from that of normal silicates by the absence of Si-O-Si bending modes around 18  μm whereas the absorption band due to Si-O bond stretching modes at about 10  μm is present. Observations show that exactly this particular characteristic can be found in some S-star spectra. Aims. We demonstrate that this observation may be explained by the formation of solid SiO as a major dust component at C/O abundance ratios close to unity. Methods. The infrared absorption properties of solid SiO are determined by laboratory transmission measurements of thin films of SiO produced by vapour deposition on a Si(111) wafer in the range between 100 cm-1 and 5000 cm-1 (2 μm and 100 μm). From the measured spectra the dielectric function of SiO is derived by using a Brendel-oscillator model, particularly suited to the representation of optical properties of amorphous materials. The results are used in model calculations of radiative transfer in circumstellar dust shells with solid SiO dust in order to determine the spectral features due to SiO dust. Results. Comparison of synthetic and observed spectra shows that reasonable agreement is obtained between the main spectral characteristics of emission bands due to solid silicon monoxide and an emission band centred on 10 μm, but without the accompanying 18μm band, observed in some S-stars. We propose that solid SiO is the carrier material of this 10  μm spectral feature

    Biogeochemical Cycling of Cadmium Isotopes along a High-Resolution Section through the North Atlantic Ocean

    No full text
    Cadmium (Cd) is a bioactive trace element in the oceans, with a nutrient-like distribution that closely matches dissolved phosphate. Seawater-dissolved stable Cd isotope ratios (δ114Cd) are a relatively new parameter, which show much promise for furthering our understanding of the biogeochemical cycling of Cd in the oceans. Here we present a high-resolution paired section of dissolved Cd concentrations and dissolved δ114Cd from 21 open-ocean stations along the US GEOTRACES GA03 transect through the North Atlantic Ocean. Dissolved Cd concentrations along the section are strongly influenced by water-mass distribution and the cycling of Cd. The highest dissolved Cd concentrations (400–540 pmol kg−1) are associated with Antarctic-sourced water masses, whilst biological uptake in the surface ocean results in a strong vertical gradient in dissolved Cd towards the surface, reaching as low as 0.03 pmol kg−1 in western surface waters. Dissolved δ114Cd is also characterized by a vertical gradient from ∼+0.2‰ in the deep ocean to +2‰ to +5‰ in the Cd-depleted surface ocean (relative to NIST SRM 3108). This variability in δ114Cd can be ascribed to mixing of Antarctic and North Atlantic water masses, together with fractionation due to in situ biological uptake of light Cd in the very surface ocean. Subtle deviations from this overall pattern of dissolved Cd concentration and dissolved δ114Cd are observed within low-oxygen waters off North Africa, where a dissolved Cd deficit relative to phosphate is associated with higher dissolved δ114Cd values. Together with elevated particulate Cd and Ba, this suggests that Cd sulfide precipitation is occurring within the water column of the North Atlantic, constituting a potentially important sink for isotopically light Cd. Additionally, the first measurements of dissolved δ114Cd within a hydrothermal plume at the Mid-Atlantic Ridge show that Cd is scavenged from the dissolved phase, leaving the remnant dissolved Cd isotopically heavier. Constraining the significance of these marine sinks for dissolved Cd is important, not only for our understanding of the marine biogeochemical cycling of Cd in the modern oceans, but also for the successful application of the microfossil Cd/Ca proxy and the development of δ114Cd as a tracer for past-ocean biogeochemical cycling

    On the early fate of hydrothermal iron at deep-sea vents: A reassessment after in situ filtration

    No full text
    Deep-sea hydrothermal venting is now recognized as a major source of iron (Fe), an essential trace element that controls marine productivity. However, the reactions occurring during dispersal from buoyant plumes to neutrally buoyant hydrothermal plumes are still poorly constrained. Here we report for the first time on the dissolved-particulate partition of Fe after in situ filtration at the early stage of mixing at different hydrothermal discharges, i.e., Lucky Strike (37 degrees N), TAG (26 degrees N), and Snakepit (23 degrees N) on the Mid-Atlantic Ridge. We found that hydrothermal iron is almost completely preserved (>90%) in the dissolved fraction, arguing for low iron-bearing sulfide precipitation of iron in basalt-hosted systems with low Fe:H2S ratios. This result can only be explained by a kinetically limited formation of pyrite. The small part of Fe being precipitated as sulfides in the mixing gradient (<10%) is restricted to the inclusion of Fe in minerals of high Cu and Zn content. We also show that secondary venting is a source of Fe-depleted hydrothermal solutions. These results provide new constrains on Fe fluxes from hydrothermal venting

    Nd/Ca ratios in plankton-towed and core top foraminifera: Confirmation of the water column acquisition of Nd

    Get PDF
    Planktic foraminifera have been used as recorders of the neodymium (Nd) isotopic composition ofseawater, although there is still controversy over the precise provenance of the Nd signal. We present anextensive, multispecific plankton tow Nd/Ca data set from several geographic locations (SE Atlantic, NEAtlantic, Norwegian Sea, and western Mediterranean), together with core top samples from theMediterranean region. The range of Nd/Ca ratios in plankton-towed foraminifera, cleaned only of organicmaterial, from all regions (0.01–0.7 umol/mol), is similar to previously published analyses of sedimentaryforaminifera cleaned using both oxidative and reductive steps, with distribution coefficients (Kd) rangingbetween 4 and 302. For the Mediterranean, where core top and plankton tow data are both available, therange for plankton tows (0.05–0.7 umol/mol) is essentially identical to that for the core tops (0.1–0.5 umol/mol). Readsorption of Nd during cleaning is ruled out by the fact that the plankton tow samplesunderwent only an oxidative cleaning process. We find a relationship between manganese (Mn) and Nd inplankton tow samples that is mirrored by a similar correlation in core top samples. This relationshipsuggests that Fe-Mn coatings are of negligible importance to the Nd budgets of foraminifera as the Nd/Mnratio it implies is over an order of magnitude greater than that seen in other Fe-Mn oxide phases. Rather,since both plankton tows and core tops present a similar behavior, the Nd/Mn relationship must originate inthe upper water column. The data are consistent with the acquisition of Nd and Mn from the water columnby binding to organic material and the fact that intratest organic material is shielded from both aggressivecleaning and diagenetic processes. Collectively, the results help to explain two abiding puzzles about Nd insedimentary planktic foraminifera: their high REE contents and the fact that they record a surface water Ndisotopic signal, regardless of the cleaning procedure used
    corecore