111 research outputs found

    Antarctic climate, Southern Ocean circulation patterns, and deep water formation during the Eocene

    Get PDF
    We assess early-to-middle Eocene seawater neodymium (Nd) isotope records from seven Southern Ocean deep-sea drill sites to evaluate the role of Southern Ocean circulation in long-term Cenozoic climate change. Our study sites are strategically located on either side of the Tasman Gateway and are positioned at a range of shallow (Nd(t) = −9.3 ± 1.5). IODP Site U1356 off the coast of AdĂ©lie Land, a locus of modern-day Antarctic Bottom Water production, is identified as a site of persistent deep water formation from the early Eocene to the Oligocene. East of the Tasman Gateway an additional local source of intermediate/deep water formation is inferred at ODP Site 277 in the SW Pacific Ocean (ΔNd(t) = −8.7 ± 1.5). Antarctic-proximal shelf sites (ODP Site 1171 and Site U1356) reveal a pronounced erosional event between 49 and 48 Ma, manifested by ~2 ΔNd unit negative excursions in seawater chemistry toward the composition of bulk sediments at these sites. This erosional event coincides with the termination of peak global warmth following the Early Eocene Climatic Optimum and is associated with documented cooling across the study region and increased export of Antarctic deep waters, highlighting the complexity and importance of Southern Ocean circulation in the greenhouse climate of the Eocene

    Human pre-valvular endocardial cells derived from pluripotent stem cells recapitulate cardiac pathophysiological valvulogenesis

    Get PDF
    Genetically modified mice have advanced our understanding of valve development and disease. Yet, human pathophysiological valvulogenesis remains poorly understood. Here we report that, by combining single cell sequencing and in vivo approaches, a population of human pre-valvular endocardial cells (HPVCs) can be derived from pluripotent stem cells. HPVCs express gene patterns conforming to the E9.0 mouse atrio-ventricular canal (AVC) endocardium signature. HPVCs treated with BMP2, cultured on mouse AVC cushions, or transplanted into the AVC of embryonic mouse hearts, undergo endothelial-to-mesenchymal transition and express markers of valve interstitial cells of different valvular layers, demonstrating cell specificity. Extending this model to patient-specific induced pluripotent stem cells recapitulates features of mitral valve prolapse and identified dysregulation of the SHH pathway. Concurrently increased ECM secretion can be rescued by SHH inhibition, thus providing a putative therapeutic target. In summary, we report a human cell model of valvulogenesis that faithfully recapitulates valve disease in a dish.We thank the Leducq Fondation for supporting Tui Neri, and funding this research under the framework of the MITRAL network and for generously awarding us for the equipment of our cell imaging facility in the frame of their program “Equipement de Recherche et Plateformes Technologiques” (ERPT to M.P.), the Genopole at Evry and the Fondation de la recherche Medicale (grant DEQ20100318280) for supporting the laboratory of Michel Puceat. Part of this work in South Carolina University was conducted in a facility constructed with support from the National Institutes of Health, Grant Number C06 RR018823 from the Extramural Research Facilities Program of the National Center for Research Resources. Other funding sources: National Heart Lung and Blood Institute: RO1-HL33756 (R.R.M.), COBRE P20RR016434–07 (R.R.M., R.A. N.), P20RR016434–09S1 (R.R.M. and R.A.N.); American Heart Association: 11SDG5270006 (R.A.N.); National Science Foundation: EPS-0902795 (R.R.M. and R.A. N.); American Heart Association: 10SDG2630130 (A.C.Z.), NIH: P01HD032573 (A.C. Z.), NIH: U54 HL108460 (A.C.Z), NCATS: UL1TR000100 (A.C.Z.); EH was supported by a fellowship of the Ministere de la recherche et de l’éducation in France.TM-M was supported by a fellowship from the Fondation Foulon Delalande and the Leducq Foundation. P.v.V. was sponsored by a UC San Diego Cardiovascular Scholarship Award and a Postdoctoral Fellowship from the California Institute for Regenerative Medicine (CIRM) Interdisciplinary Stem Cell Training Program II. S.M.E. was funded by a grant from the National Heart, Lung, and Blood Institute (HL-117649). A.T. is supported by the National Heart, Lung, and Blood Institute (R01-HL134664).S

    The large-scale evolution of neodymium isotopic composition in the global modern and Holocene ocean revealed from seawater and archive data

    Get PDF
    Neodymium isotopic compositions (143Nd/144Nd or ΔNd) have been used as a tracer of water masses and lithogenic inputs to the ocean. To further evaluate the faithfulness of this tracer, we have updated a global seawater ΔNd database and combined it with hydrography parameters (temperature, salinity, nutrients and oxygen concentrations), carbon isotopic ratio and radiocarbon of dissolved inorganic carbon. Archive ΔNd data are also compiled for leachates, foraminiferal tests, deep-sea corals and fish teeth/debris from the Holocene period (< 10,000 years). At water depths ≄ 1500 m, property-property plots show clear correlations between seawater ΔNd and the other variables, suggesting that large-scale water mass mixing is a primary control of deepwater ΔNd distribution. At ≄ 200 m, basin-scale seawater T-S-ΔNd diagrams demonstrate the isotopic evolution of different water masses. Seawater and archive ΔNd values are compared using property-property plots and T-S-ΔNd diagrams. Archive values generally agree with corresponding seawater values although they tend to be at the upper limit in the Pacific. Both positive and negative offsets exist in the northern North Atlantic. Applying multiple regression analysis to deep (≄ 1500 m) seawater data, we established empirical equations that predict the main, large-scale, deepwater ΔNd trends from hydrography parameters. Large offsets from the predicted values are interpreted as a sign of significant local/regional influence. Dominant continental influence on seawater and archive ΔNd is observed mainly within 1000 km from the continents. Generally, seawater and archive ΔNd values form gradual latitudinal trend in the Atlantic and Pacific at depths ≄ 600 m, consistent with the idea that Nd isotopes help distinguish between northern/southern sourced water contributions at intermediate and deep water depths

    Early Cretaceous vegetation and climate change at high latitude: Palynological evidence from Isachsen Formation, Arctic Canada

    Get PDF
    Quantitative palynology of the marginal marine and deltaic-fluvial Isachsen Formation of the Sverdrup Basin, Canadian Arctic, provides insight into high latitude climate during much of the Early Cretaceous (Valanginian to early Aptian). Detrended Correspondence Analysis of main pollen and spore taxa is used to derive three ecological groupings influenced by moisture and disturbance based on the botanical affinities of palynomorphs: 1) a mixed coniferous assemblage containing both lowland and upland components; 2) a conifer-filicopsid community that likely grew in dynamic lowland habitats; and, 3) a mature dry lowland community composed of Cheirolepidiaceans. Stratigraphic changes in the relative abundance of pollen and spore taxa reflect climate variability in this polar region during the ~20 Mya history of the Isachsen Formation. The late Valanginian was relatively cool and moist and promoted lowland conifer-filicopsid communities. Warming in the Hauterivian resulted in the expansion coniferous communities in well-drained or arid hinterlands. A return to relatively cool and moist conditions in the Barremian resulted in the expansion of mixed lowland communities. This work demonstrates the utility of a multivariate statistical approach to palynology to provide insight into the composition and dynamics of ecosystems and climate of high latitude regions during the Early Cretaceous

    A Gigantic Shark from the Lower Cretaceous Duck Creek Formation of Texas

    Get PDF
    Author Contributions Conceived and designed the experiments: JAF SNS JAD-F. Analyzed the data: JAF SNS. Wrote the paper: JAF SNS. Site data for OMNH V1727 are available by request from the department of vert. paleontology at the (SN)OMNH.Three large lamniform shark vertebrae are described from the Lower Cretaceous of Texas. We interpret these fossils as belonging to a single individual with a calculated total body length of 6.3 m. This large individual compares favorably to another shark specimen from the roughly contemporaneous Kiowa Shale of Kansas. Neither specimen was recovered with associated teeth, making confident identification of the species impossible. However, both formations share a similar shark fauna, with Leptostyrax macrorhiza being the largest of the common lamniform sharks. Regardless of its actual identification, this new specimen provides further evidence that large-bodied lamniform sharks had evolved prior to the Late Cretaceous.Ye

    A high-resolution belemnite geochemical analysis of Early Cretaceous (Valanginian-Hauterivian) environmental and climatic perturbations

    Get PDF
    International audienceThe Early Cretaceous Weissert event, characterized by a positive carbon isotope excursion and coincident with the ParanĂĄ-Etendeka volcanism, saw a biogeochemical chain of events that ultimately led to an increase in carbon burial. A conclusive link between the ParanĂĄ-Etendeka volcanism and its impact upon the environment remains, however, elusive. Here we reconstruct temperature through the Weissert event from Mg/Ca ratios of belemnites from the Vocontian Trough (France) and SE Spain and use carbon isotopes to link our temperature reconstruction to marine records of carbon cycling. We provide evidence that the ParanĂĄ-Etendeka volcanism, unlike some large igneous provinces, did not cause a climate warming. The case can be made for cooling in the last stages of the Weissert event, which possibly reflects substantial CO 2 drawdown. In the absence of warming and consequent accelerated hydrological cycling and the relatively long duration of the eruptive phase of the ParanĂĄ-Etendeka, an alternate trigger for increased fertilization of the oceans is implicated
    • 

    corecore