256 research outputs found
Genetic Variability in the Italian Heavy Draught Horse from Pedigree Data and Genomic Information
This study aimed to investigate the genetic diversity in the Italian Heavy Horse Breed from pedigree and genomic data. Pedigree information for 64,917 individuals were used to assess inbreeding level, effective population size (Ne), and effective numbers of founders and ancestors (fa /fe). Genotypic information from SNP markers were available for 267 individuals of both sexes, and it allowed estimating genomic inbreeding in two methods (observed versus expected homozygosity and from ROH) to study the breed genomic structure and possible selection signatures. Pedigree and genomic inbreeding were greatly correlated (0.65 on average). The inbreeding trend increased over time, apart from periods in which the base population enlarged, when Ne increased also. Recent bottlenecks did not occur in the genome, as fa /fe have shown. The observed homozygosity results were on average lower than expected, which was probably due to the use of French Breton stallions to support the breed genetic variability. High homozygous regions suggested that inbreeding increased in different periods. Two subpopulations were distinguished, which was probably due to the different inclusion of French animals by breeders. Few selection signatures were found at the population level, with possible associations to disease resistance. The almost low inbreeding rate suggested that despite the small breed size, conservation actions are not yet required
Quality of Life and Its Psychosocial Predictors among Patients with Disorders of Gut–Brain Interaction: A Comparison with Age- and Sex-Matched Controls
The disorders of gut–brain interaction (DGBIs) are a heterogeneous group of chronic conditions that greatly reduce patients’ quality of life (QoL). To date, biopsychosocial factors (such as gastrointestinal symptoms, alexithymia, and interpersonal problems) are believed to contribute to the development and maintenance of DGBIs, but their role in affecting patients’ QoL is still under investigation. Out of 141 patients seeking treatment for their gastrointestinal symptoms, 71 were diagnosed with a DGBI (47 females, 66.2%; Mage: 41.49 ± 17.23 years) and were age- and sex-matched to 71 healthy controls (47 females, 66.2%; Mage: 40.45 ± 16.38 years) without any current gastrointestinal symptom or diagnosis. Participants completed a sociodemographic and clinical questionnaire and a survey investigating several psychosocial risk factors. We found greater symptom severity and difficulties in identifying feelings among patients compared to controls. Further, multiple linear regression analyses evidenced that, among patients, higher expressive suppression of emotions, difficulties in identifying feelings and interpersonal problems, and a lower cognitive reappraisal of emotions predicted lower QoL. Data suggest that the QoL of patients with DGBIs is affected not only by common risk factors (e.g., interpersonal problems) but also by specific difficulties in processing and regulating emotions. The implications of these findings are discussed
Resource Combinatory Algebras
International audienc
A New Multi-Index Method for the Eutrophication Assessment in Transitional Waters: Large-Scale Implementation in Italian Lagoons
Eutrophication represents one of the most impacting threats for the ecological status and related ecosystem services of transitional waters; hence, its assessment plays a key role in the management of these ecosystems. A new multi-index method for eutrophication assessment, based on the ecological index MaQI (Macrophyte Quality Index), the trophic index TWQI (Transitional Water Quality Index), and physicochemical quality elements (sensu Dir. 2000/60/EC), was developed including both driver and impact indicators. The study presents a large-scale implementation of the method, which included more than 100 Italian lagoon sites, covering a wide variability of lagoon typologies and conditions. Overall, 35% of sites resulted in eutrophic status, 45% in mesotrophic, and 25% in oligotrophic status
Meiotic silencing and fragmentation of the male germline restricted chromosome in zebra finch
During male meiotic prophase in mammals, X and Y are in a largely unsynapsed configuration, which is thought to trigger meiotic sex chromosome inactivation (MSCI). In avian species, females are ZW, and males ZZ. Although Z and W in chicken oocytes show complete, largely heterologous synapsis, they too undergo MSCI, albeit only transiently. The W chromosome is already inactive in early meiotic prophase, and inactive chromatin marks may spread on to the Z upon synapsis. Mammalian MSCI is considered as a specialised form of the general meiotic silencing mechanism, named meiotic silencing of unsynapsed chromatin (MSUC). Herein, we studied the avian form of MSUC, by analysing the behaviour of the peculiar germline restricted chromosome (GRC) that is present as a single copy in zebra finch spermatocytes. In the female germline, this chromosome is present in two copies, which normally synapse and recombine. In contrast, during male meiosis, the single GRC is always eliminated. We found that the GRC in the male germline is silenced from early leptotene onwards, similar to the W chromosome in avian oocytes. The GRC remains largely unsynapsed throughout meiotic prophase I, although patches of SYCP1 staining indicate that part of the GRC may self-synapse. In addition, the GRC is largely devoid of meiotic double strand breaks. We observed a lack of the inner centromere protein INCENP on the GRC and elimination of the GRC following metaphase I. Subsequently, the GRC forms a micronucleus in which the DNA is fragmented. We conclude that in contrast to MSUC in mammals, meiotic silencing of this single chromosome in the avian germline occurs prior to, and independent of DNA double strand breaks and chromosome pairing, hence we have named this phenomenon meiotic silencing prior to synapsis (MSPS)
Inflammatory indexes as predictive factors for platinum sensitivity and as prognostic factors in recurrent epithelial ovarian cancer patients: a MITO24 retrospective study
Neutrophil-to-lymphocyte ratio (NLR) and systemic inflammatory index (SII) are prognostic factors in epithelial ovarian cancer (EOC). Their predictive value for platinum-sensitivity and their role in recurrent EOC are unknown. A total of 375 EOC patients were retrospectively analyzed. The correlation between baseline NLR and SII, and platinum-free interval (PFI) according to first line bevacizumab treatment were analyzed using logistic regression analyses adjusted for baseline patient characteristics. Subsequently NLR and SII calculated before second line treatment initiation were evaluated to identify a potential correlation with progression-free survival (PFS) and overall survival (OS) in platinum-sensitive and in platinum-resistant population. In multivariate analysis, NLR ≥ 3 is an independent predictive factor for PFI at 6 months in the chemotherapy group (OR = 2.77, 95% CI 1.38–5.56, p = 0.004), not in bevacizumab treated patients. After having adjusted for ECOG performance status, histology, ascites, bevacizumab treatment at second line and BRCA status, NLR ≥ 3 and SII ≥ 730 are significantly associated with worse OS in platinum-sensitive (HR = 2.69, 95% CI 1.60–4.53, p = 0.002; HR = 2.11, 95% CI 1.29–3.43, p = 0.003, respectively), not in platinum-resistant EOC patients. Low NLR is an independent predictive factor for platinum-sensitivity in patients treated without bevacizumab. NLR and SII are prognostic factors in recurrent platinum-sensitive EOC patients
Computing Argument Preferences and Explanations in Abstract Argumentation
Financial support from The UK Engineering and Physical Sciences Research Council (EPSRC) for the grant (EP/P011829/1), Supporting Security Policy with Effective Digital Intervention (SSPEDI) is gratefully acknowledged.Postprin
Judgment Aggregation with Abstentions under Voters' Hierarchy
International audienceSimilar to Arrow’s impossibility theorem for preference aggregation, judgment aggregation has also an intrinsic impossibility for generating consistent group judgment from individual judgments. Removing some of the pre-assumed conditions would mitigate the problem but may still lead to too restrictive solutions. It was proved that if completeness is removed but other plausible conditions are kept, the only possible aggregation functions are oligarchic, which means that the group judgment is purely determined by a certain subset of participating judges. Instead of further challenging the other conditions, this paper investigates how the judgment from each individual judge affects the group judgment in an oligarchic environment. We explore a set of intuitively demanded conditions under abstentions and design a feasible judgment aggregation rule based on the agents’ hierarchy. We show this proposed aggregation rule satisfies the desirable conditions. More importantly, this rule is oligarchic with respect to a subset of agenda instead of the whole agenda due to its literal-based characteristics
<i>Gaia</i> Data Release 1. Summary of the astrometric, photometric, and survey properties
Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7.
Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release.
Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue.
Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the HIPPARCOS and Tycho-2 catalogues – a realisation of the Tycho-Gaia Astrometric Solution (TGAS) – and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ∼3000 Cepheid and RR-Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr−1 for the proper motions. A systematic component of ∼0.3 mas should be added to the parallax uncertainties. For the subset of ∼94 000 HIPPARCOS stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr−1. For the secondary astrometric data set, the typical uncertainty of the positions is ∼10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ∼0.03 mag over the magnitude range 5 to 20.7.
Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data
- …