452 research outputs found

    Highlighting the Major Trade-Offs Concerning Anti-Terrorism Policies

    Full text link
    Human-induced security, or terrorism, is a threat to wellbeing in Europe and beyond. In this Policy Briefing, we investigate the risks involved in terrorism, both with respect to the likelihood and with respect to the consequences of acts of terrorism. Furthermore, we provide a basic analysis of existing anti-terrorism policies, the costs involved in them and their effectiveness. We show that terrorism is a very broad term, but that one can make a number of broad policy recommendations, including the fact that the rational economic approach to terrorism recognizes that terrorists respond to the incentives they are provided with

    How Rational Is the Response of Individuals to the Threat of Terrorism in Europe?

    Full text link
    In this Policy Briefing, we address two important questions. We look at the drivers of concern about terrorism and find that beyond individual characteristics, it is also affected by the occurrence of terrorism. When distinguishing between permanent and transitory terrorism, the first has a much stronger impact than the first. The second question concerns how terrorism affects the policy preferences of voters. We find that while a higher level of terrorist concern does increase people's willingness to trade off civil liberties for more security, a singular attack has only a temporary effect. After only a few months, people's preferences return towards their pre-attack levels

    Synthesis of diarylamines in the benzo[b]thiophene series bearing electron donating or withdrawing groups by Buchwald–Hartwig C–N coupling

    Get PDF
    Diarylamines in the benzo[b]thiophene series bearing electron donating or withdrawing groups, were prepared by Buchwald– Hartwig C–N coupling in moderate to high yields. The conditions used were Pd(OAc)2 (3 mol%), BINAP as ligand (4 mol%) and Cs2CO3 as base (1.4 equiv.), in toluene at 1008C, being 6-bromo or amino benzo[b]thiophenes coupled, respectively, with substituted anilines or phenylbromides. The 6-aminobenzo[b]thiophene derivatives were also prepared by palladium catalyzed C–N coupling of the corresponding 6-bromo compounds with benzophenone imine, followed by acidic hydrolysis of the imino derivatives. When 4-nitrobromobenzene and 4-bromobenzonitrile were used as coupling components, triarylamines were also isolated in small amounts. The presence of a fluorine atom on the phenylbromide highly increases the diarylamine yield

    Shape modeling technique KOALA validated by ESA Rosetta at (21) Lutetia

    Full text link
    We present a comparison of our results from ground-based observations of asteroid (21) Lutetia with imaging data acquired during the flyby of the asteroid by the ESA Rosetta mission. This flyby provided a unique opportunity to evaluate and calibrate our method of determination of size, 3-D shape, and spin of an asteroid from ground-based observations. We present our 3-D shape-modeling technique KOALA which is based on multi-dataset inversion. We compare the results we obtained with KOALA, prior to the flyby, on asteroid (21) Lutetia with the high-spatial resolution images of the asteroid taken with the OSIRIS camera on-board the ESA Rosetta spacecraft, during its encounter with Lutetia. The spin axis determined with KOALA was found to be accurate to within two degrees, while the KOALA diameter determinations were within 2% of the Rosetta-derived values. The 3-D shape of the KOALA model is also confirmed by the spectacular visual agreement between both 3-D shape models (KOALA pre- and OSIRIS post-flyby). We found a typical deviation of only 2 km at local scales between the profiles from KOALA predictions and OSIRIS images, resulting in a volume uncertainty provided by KOALA better than 10%. Radiometric techniques for the interpretation of thermal infrared data also benefit greatly from the KOALA shape model: the absolute size and geometric albedo can be derived with high accuracy, and thermal properties, for example the thermal inertia, can be determined unambiguously. We consider this to be a validation of the KOALA method. Because space exploration will remain limited to only a few objects, KOALA stands as a powerful technique to study a much larger set of small bodies using Earth-based observations.Comment: 15 pages, 8 figures, 2 tables, accepted for publication in P&S

    Model-independent evidence for J/ψpJ/\psi p contributions to Λb0J/ψpK\Lambda_b^0\to J/\psi p K^- decays

    Get PDF
    The data sample of Λb0J/ψpK\Lambda_b^0\to J/\psi p K^- decays acquired with the LHCb detector from 7 and 8~TeV pppp collisions, corresponding to an integrated luminosity of 3 fb1^{-1}, is inspected for the presence of J/ψpJ/\psi p or J/ψKJ/\psi K^- contributions with minimal assumptions about KpK^- p contributions. It is demonstrated at more than 9 standard deviations that Λb0J/ψpK\Lambda_b^0\to J/\psi p K^- decays cannot be described with KpK^- p contributions alone, and that J/ψpJ/\psi p contributions play a dominant role in this incompatibility. These model-independent results support the previously obtained model-dependent evidence for Pc+J/ψpP_c^+\to J/\psi p charmonium-pentaquark states in the same data sample.Comment: 21 pages, 12 figures (including the supplemental section added at the end

    Quantum numbers of the X(3872)X(3872) state and orbital angular momentum in its ρ0Jψ\rho^0 J\psi decay

    Get PDF
    Angular correlations in B+X(3872)K+B^+\to X(3872) K^+ decays, with X(3872)ρ0J/ψX(3872)\to \rho^0 J/\psi, ρ0π+π\rho^0\to\pi^+\pi^- and J/ψμ+μJ/\psi \to\mu^+\mu^-, are used to measure orbital angular momentum contributions and to determine the JPCJ^{PC} value of the X(3872)X(3872) meson. The data correspond to an integrated luminosity of 3.0 fb1^{-1} of proton-proton collisions collected with the LHCb detector. This determination, for the first time performed without assuming a value for the orbital angular momentum, confirms the quantum numbers to be JPC=1++J^{PC}=1^{++}. The X(3872)X(3872) is found to decay predominantly through S wave and an upper limit of 4%4\% at 95%95\% C.L. is set on the fraction of D wave.Comment: 16 pages, 4 figure

    Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Get PDF
    A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN

    Limit on the Radiative Neutrinoless Double Electron Capture of 36^{36}Ar from GERDA Phase I

    Get PDF
    Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. A search for neutrinoless double electron capture of 36^{36}Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array (GERDA) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of 36^{36}Ar was established: T1/2>T_{1/2} > 3.6 ×\times 1021^{21} yr at 90 % C.I.Comment: 7 pages, 3 figure

    Promotion of Self-Nucleation with Latent Form i Nuclei in Polybutene-1 and Its Copolymer

    Get PDF
    The formation of form I nuclei of polybutene-1 (PB-1) and its copolymer with polyethylene (PB1-ran-PE) has been studied by means of modified self-nucleation protocols. Even when the self-nucleation temperature was high enough and all form II crystals melt, recrystallization can be accelerated if the melt-crystallized sample was annealed at low temperatures (below 60 \ub0C for PB-1 and 75 \ub0C for PB1-ran-PE) for just 3 min. These results suggest the formation of latent form I nuclei within form II crystals. This hypothesis is consistent with the observed growth of a small amount of form I crystals during heating, after previous annealing at temperature lower than 20 \ub0C. In addition, a peculiar phenomenon was found in PB1-ran-PE, as both form II and form I\u2032 can be induced by the presence of latent form I nuclei, due to cross-nucleation and self-nucleation effects, respectively. The final ratio of the two kinds of crystal forms is a result of the competition between the two nucleation rates, which strongly depend on crystallization temperature. In this work, we have shown that careful design of novel self-nucleation protocols can yield evidence of the early stages of form II to form I transition, even when the degree of transformed crystals is below the limit of detection of conventional techniques sensitive to crystalline order (DSC, WAXD, and FTIR)

    Delocalization Enhances Conductivity at High Doping Concentrations

    Get PDF
    Many applications of organic semiconductors require high electrical conductivities and hence high doping levels. Therefore, it is indispensable for effective material design to have an accurate understanding of the underlying transport mechanisms in this regime. In this study, own and literature experimental data that reveal a power-law relation between the conductivity and charge density of strongly p-doped conjugated polymers are combined. This behavior cannot consistently be described with conventional models for charge transport in energetically disordered materials. Here, it is shown that the observations can be explained in terms of a variable range hopping model with an energy-dependent localization length. A tight-binding model is used to quantitatively estimate of the energy-dependent localization length, which is used in an analytical variable range hopping model. In the limit of low charge densities, the model reproduces the well-known Mott variable range hopping behavior, while for high charge densities, the experimentally observed superlinear increase in conductivity with charge density is reproduced. The latter behavior occurs when the Fermi level reaches partially delocalized states. This insight can be anticipated to lead to new strategies to increase the conductivity of organic semiconductors
    corecore