422 research outputs found

    Highlighting the Major Trade-Offs Concerning Anti-Terrorism Policies

    Full text link
    Human-induced security, or terrorism, is a threat to wellbeing in Europe and beyond. In this Policy Briefing, we investigate the risks involved in terrorism, both with respect to the likelihood and with respect to the consequences of acts of terrorism. Furthermore, we provide a basic analysis of existing anti-terrorism policies, the costs involved in them and their effectiveness. We show that terrorism is a very broad term, but that one can make a number of broad policy recommendations, including the fact that the rational economic approach to terrorism recognizes that terrorists respond to the incentives they are provided with

    How Rational Is the Response of Individuals to the Threat of Terrorism in Europe?

    Full text link
    In this Policy Briefing, we address two important questions. We look at the drivers of concern about terrorism and find that beyond individual characteristics, it is also affected by the occurrence of terrorism. When distinguishing between permanent and transitory terrorism, the first has a much stronger impact than the first. The second question concerns how terrorism affects the policy preferences of voters. We find that while a higher level of terrorist concern does increase people's willingness to trade off civil liberties for more security, a singular attack has only a temporary effect. After only a few months, people's preferences return towards their pre-attack levels

    Promotion of Self-Nucleation with Latent Form i Nuclei in Polybutene-1 and Its Copolymer

    Get PDF
    The formation of form I nuclei of polybutene-1 (PB-1) and its copolymer with polyethylene (PB1-ran-PE) has been studied by means of modified self-nucleation protocols. Even when the self-nucleation temperature was high enough and all form II crystals melt, recrystallization can be accelerated if the melt-crystallized sample was annealed at low temperatures (below 60 \ub0C for PB-1 and 75 \ub0C for PB1-ran-PE) for just 3 min. These results suggest the formation of latent form I nuclei within form II crystals. This hypothesis is consistent with the observed growth of a small amount of form I crystals during heating, after previous annealing at temperature lower than 20 \ub0C. In addition, a peculiar phenomenon was found in PB1-ran-PE, as both form II and form I\u2032 can be induced by the presence of latent form I nuclei, due to cross-nucleation and self-nucleation effects, respectively. The final ratio of the two kinds of crystal forms is a result of the competition between the two nucleation rates, which strongly depend on crystallization temperature. In this work, we have shown that careful design of novel self-nucleation protocols can yield evidence of the early stages of form II to form I transition, even when the degree of transformed crystals is below the limit of detection of conventional techniques sensitive to crystalline order (DSC, WAXD, and FTIR)

    Delocalization Enhances Conductivity at High Doping Concentrations

    Get PDF
    Many applications of organic semiconductors require high electrical conductivities and hence high doping levels. Therefore, it is indispensable for effective material design to have an accurate understanding of the underlying transport mechanisms in this regime. In this study, own and literature experimental data that reveal a power-law relation between the conductivity and charge density of strongly p-doped conjugated polymers are combined. This behavior cannot consistently be described with conventional models for charge transport in energetically disordered materials. Here, it is shown that the observations can be explained in terms of a variable range hopping model with an energy-dependent localization length. A tight-binding model is used to quantitatively estimate of the energy-dependent localization length, which is used in an analytical variable range hopping model. In the limit of low charge densities, the model reproduces the well-known Mott variable range hopping behavior, while for high charge densities, the experimentally observed superlinear increase in conductivity with charge density is reproduced. The latter behavior occurs when the Fermi level reaches partially delocalized states. This insight can be anticipated to lead to new strategies to increase the conductivity of organic semiconductors

    Double Doping of a Low-Ionization-Energy Polythiophene with a Molybdenum Dithiolene Complex

    Get PDF
    Doping of organic semiconductors is crucial for tuning the charge-carrier density of conjugated polymers. The exchange of more than one electron between a monomeric dopant and an organic semiconductor allows the polaron density to be increased relative to the number of counterions that are introduced into the host matrix. Here, a molybdenum dithiolene complex with a high electron affinity of 5.5 eV is shown to accept two electrons from a polythiophene that has a low ionization energy of 4.7 eV. Double p-doping is consistent with the ability of the monoanion salt of the molybdenum dithiolene complex to dope the polymer. The transfer of two electrons to the neutral dopant was also confirmed by electron paramagnetic resonance spectroscopy since the monoanion, but not the dianion, of the molybdenum dithiolene complex features an unpaired electron. Double doping allowed an ionization efficiency of 200% to be reached, which facilitates the design of strongly doped semiconductors while lessening any counterion-induced disruption of the nanostructure

    Interfacial nucleation in iPP/PB-1 blends promotes the formation of polybutene-1 trigonal crystals

    Get PDF
    The formation of trigonal Form I\ub4 crystals of polybutene-1 (PB-1) directly from melt has drawn much attention in past decades. In this study, we investigate the fractionated crystallization behavior of PB-1 within droplets formed by blending PB-1 with an excess of isotactic polypropylene (iPP) employing DSC, SEM, in situ synchrotron WAXD and FT-IR. When PB-1 is dispersed into a large number of small size droplets, the heterogeneous nucleation of Form II crystals can be inhibited because the number of droplets is larger than that of active nucleation sites for Form II (i.e., active heterogeneities originally present in bulk PB-1). The nucleation of the finely dispersed PB-1 droplets does not occur homogenously, but at the interface with the iPP matrix, which induces the crystallization of the droplets into Form I\ub4. The crystallization rate of Form I\ub4 at different temperatures was determined by Fourier transform infrared spectroscopy. It was found that trigonal Form I\ub4 crystallizes faster when the content of PB-1 in the blend is lower, and the specific interfacial surface area is larger. The opposite effect has been observed for the kinetics of the metastable Form II formation. It is therefore suggested that Form I\ub4 crystallization is driven by the nucleation of PB-1 at the crystalline iPP surface, which competes with the crystallization of Form II induced by nucleating heterogeneities present in PB-1 droplets

    Chemical Doping of Conjugated Polymers with the Strong Oxidant Magic Blue

    Get PDF
    Molecular doping of organic semiconductors is a powerful tool for the optimization of organic electronic devices and organic thermoelectric materials. However, there are few redox dopants that have a sufficiently high electron affinity to allow the doping of conjugated polymers with an ionization energy of more than 5.3\ua0eV. Here, p-doping of a broad palette of conjugated polymers with high ionization energies is achieved by using the strong oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate (Magic Blue). In particular diketopyrrolopyrrole (DPP)-based copolymers reach a conductivity of up to 100 S cm−1 and a thermoelectric power factor of 10 \ub5W m−1 K−2. Further, both electron paramagnetic resonance (EPR) as well as a combination of spectroelectrochemistry and chronoamperometry is used to estimate the charge-carrier density of the polymer PDPP-3T doped with Magic Blue. A molar attenuation coefficient of 6.0\ua0\ub1\ua00.2 7 103 m2 mol−1 is obtained for the first polaronic sub-bandgap absorption of electrochemically oxidized PDPP-3T. Comparison with chemically doped PDPP-3T suggests a charge-carrier density on the order of 1026 m−3, which yields a charge-carrier mobility of up to 0.5 cm2 V−1 s−1 for the most heavily doped material

    Interphase Design of Cellulose Nanocrystals/Poly(hydroxybutyrate- ran-valerate) Bionanocomposites for Mechanical and Thermal Properties Tuning

    Get PDF
    Poly[(3-hydroxybutyrate)-ran-(3-hydroxyvalerate)] (PHBV) is a bacterial polyester with a strong potential as a substitute for oil-based thermoplastics due to its biodegradability and renewability. However, its inherent slow crystallization rate limits its thermomechanical properties and therefore its applications. In this work, surface-modified cellulose nanocrystals (CNCs) have been investigated as green and biosourced nucleating and reinforcing agent for PHBV matrix. Different ester moieties from the CNCs were thereby produced through a green one-pot hydrolysis/Fisher esterification. Beyond the improved dispersion, the CNCs surface esterification affected the thermal and thermomechanical properties of PHBV. The results demonstrate that butyrate-modified CNCs, mimicking the PHBV chemical structure, brought a considerable improvement toward the CNCs/matrix interface, leading to an enhancement of the PHBV thermomechanical properties via a more efficient stress transfer, especially above its glass transition

    Quantitative analysis of amino acid metabolism in liver cancer links glutamate excretion to nucleotide synthesis

    Get PDF
    Many cancer cells consume glutamine at high rates; counterintuitively, they simultaneously excrete glutamate, the first intermediate in glutamine metabolism. Glutamine consumption has been linked to replenishment of tricarboxylic acid cycle (TCA) intermediates and synthesis of adenosine triphosphate (ATP), but the reason for glutamate excretion is unclear. Here, we dynamically profile the uptake and excretion fluxes of a liver cancer cell line (HepG2) and use genome-scale metabolic modeling for in-depth analysis. We find that up to 30% of the glutamine is metabolized in the cytosol, primarily for nucleotide synthesis, producing cytosolic glutamate. We hypothesize that excreting glutamate helps the cell to increase the nucleotide synthesis rate to sustain growth. Indeed, we show experimentally that partial inhibition of glutamate excretion reduces cell growth. Our integrative approach thus links glutamine addiction to glutamate excretion in cancer and points toward potential drug targets

    Shape modeling technique KOALA validated by ESA Rosetta at (21) Lutetia

    Full text link
    We present a comparison of our results from ground-based observations of asteroid (21) Lutetia with imaging data acquired during the flyby of the asteroid by the ESA Rosetta mission. This flyby provided a unique opportunity to evaluate and calibrate our method of determination of size, 3-D shape, and spin of an asteroid from ground-based observations. We present our 3-D shape-modeling technique KOALA which is based on multi-dataset inversion. We compare the results we obtained with KOALA, prior to the flyby, on asteroid (21) Lutetia with the high-spatial resolution images of the asteroid taken with the OSIRIS camera on-board the ESA Rosetta spacecraft, during its encounter with Lutetia. The spin axis determined with KOALA was found to be accurate to within two degrees, while the KOALA diameter determinations were within 2% of the Rosetta-derived values. The 3-D shape of the KOALA model is also confirmed by the spectacular visual agreement between both 3-D shape models (KOALA pre- and OSIRIS post-flyby). We found a typical deviation of only 2 km at local scales between the profiles from KOALA predictions and OSIRIS images, resulting in a volume uncertainty provided by KOALA better than 10%. Radiometric techniques for the interpretation of thermal infrared data also benefit greatly from the KOALA shape model: the absolute size and geometric albedo can be derived with high accuracy, and thermal properties, for example the thermal inertia, can be determined unambiguously. We consider this to be a validation of the KOALA method. Because space exploration will remain limited to only a few objects, KOALA stands as a powerful technique to study a much larger set of small bodies using Earth-based observations.Comment: 15 pages, 8 figures, 2 tables, accepted for publication in P&S
    • …
    corecore