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Research Article

Delocalization Enhances Conductivity at High Doping 
Concentrations

Dennis Derewjanko, Dorothea Scheunemann, Emmy Järsvall, Anna I. Hofmann, 
Christian Müller,* and Martijn Kemerink*

Many applications of organic semiconductors require high electrical con-
ductivities and hence high doping levels. Therefore, it is indispensable for 
effective material design to have an accurate understanding of the under-
lying transport mechanisms in this regime. In this study, own and literature 
experimental data that reveal a power-law relation between the conductivity 
and charge density of strongly p-doped conjugated polymers are combined. 
This behavior cannot consistently be described with conventional models 
for charge transport in energetically disordered materials. Here, it is shown 
that the observations can be explained in terms of a variable range hopping 
model with an energy-dependent localization length. A tight-binding model is 
used to quantitatively estimate of the energy-dependent localization length, 
which is used in an analytical variable range hopping model. In the limit of 
low charge densities, the model reproduces the well-known Mott variable 
range hopping behavior, while for high charge densities, the experimentally 
observed superlinear increase in conductivity with charge density is repro-
duced. The latter behavior occurs when the Fermi level reaches partially 
delocalized states. This insight can be anticipated to lead to new strategies to 
increase the conductivity of organic semiconductors.
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light emitting diode displays and organic 
solar cells have reached the market place, 
whereas others like organic thermoelec-
tric generators are still under develop-
ment.[4,5] In all cases, the optimization of 
the involved active materials is a topic of 
intense research since many of the rel-
evant figures of merit still lag behind their 
inorganic counterparts,[4,5] forming a bot-
tleneck for commercial relevance. Even 
now, doped polymers find interesting 
niche applications that inorganic mate-
rials can hardly fill. In virtually all cases, 
a specific concern is the limited elec-
trical conductivity of the involved organic 
semiconductors,[6–21] even at the currently 
highest available doping concentrations. 
In comparison to inorganic semiconduc-
tors, the physics behind doping of organic 
semiconductors appears considerably 
more intricate.[22] For example, at high 
doping concentrations the steric proper-
ties and even the orientation of the dopant 
molecule affect the probability of charge 

transfer and the overall conductivity.[6,23,24] A further complica-
tion is that the doping changes the energetic landscape as seen 
by the moving charge carriers, which is commonly accounted 
for as a modification of the density of states.[25–27] Concomi-
tantly, charge transport in doped organic semiconductors is not 
yet fully understood, as evidenced by the absence of a universal, 
physics-based, as opposed to phenomenological, quantitative 
model. In order to be able to purposefully design optimal high-
conductivity organic materials for their respective applications, 
that is, to make quantitative predictions, it is indispensable to 
have a precise knowledge of the underlying transport mecha-
nisms at high charge carrier concentrations.

In this work, we compare a wide range of literature values 
as well as own data for the electrical conductivity σ and charge 
density n of a variety of p-doped conjugated polymers at high 
doping concentrations and observe a power-law,

σ ∝ γn 	 (1)

with γ an exponent that typically lies in the range 2 to 5. This 
behavior is not predicted by conventional models for doped 
organic semiconductors as further detailed below. The purpose 
of the current work is to propose a minimal model to describe 
the carrier density dependence of the conductivity at all charge 

The ORCID identification number(s) for the author(s) of this article 
can be found under https://doi.org/10.1002/adfm.202112262.

1. Introduction

Devices based on organic semiconductors hold the promise to 
be very flexible, scalable on large areas, light-weight, and cost-
effective to produce.[1–3] In fact, several applications like organic 
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carrier concentrations. Before proposing our solution, we will 
briefly review some previous studies.

Tanase et  al. investigated poly(p-phenylene vinylene) (PPV) 
and poly(3-hexylthiophene) (P3HT) based hole-only diodes 
and field effect transistors and used the percolation model of 
Vissenberg and Matters (VM) to describe the data.[28] Specifi-
cally, the VM model describes the charge density n dependency 
of the conductivity for an exponential density of states (DOS) as

σ ∝ /0nT T 	 (2)

with T0 the characteristic temperature. Good agreement of the 
experimental data and the model with characteristic tempera-
tures of T0 = 425 K for P3HT and T0 = 540 K for a PPV derivative 
was found in the low- to intermediate density regime. However, 
an exponential DOS tail is not compatible with common obser-
vations of intrinsic organic semiconductors like a finite mobility 
value at low carrier density and the characteristic temperature 
dependence of the mobility[29] μ ∝ exp (−(T0/T)2). The success 
of the VM model to describe field effect transistor data can be 
attributed to the additional dipolar energetic disorder at the inter-
face between the organic and the gate dielectric that gives rise to 
an exponential tail below an otherwise Gaussian DOS.[30,31]

Interestingly, it was shown by Bässler and coworkers that 
exponential DOS tails also arise as a consequence of doping due 
to the long-range Coulomb interaction with ionized dopants.[25,26] 
When the resulting DOS is integrated in an analytical variable 
range hopping model, convincing agreement with both kinetic 
Monte Carlo simulations as well as experiments is found for 
low and intermediate doping concentrations.[27] Particularly, 
this model could explain the quasi-universal power law relation  
S ∝ σ−1/4 between Seebeck coefficient S and conductivity that 

is commonly observed.[32,33] The universality of this behavior is 
directly related to the fact that the slope of the doping-induced 
exponential tail depends predominantly on the dielectric con-
stant εr and the distance between the localized sites, that is the 
inter-site distance i

1/3a NNN ∝ −  with Ni the total density of local-
ized states, and not on the charge carrier density. Since εr and 
Ni vary only little between different materials, the slope of the 
induced tail therefore hardly depends on the investigated mate-
rial. Hence, the observed strong variation in the exponent γ in 
Equation  (1) is at odds with a picture where a doping-induced 
exponential tail explains the observed quasi-universal power law 
behavior at high charge carrier densities of the shape of Equa-
tion  (2). The experimental data summarized in Figure 1 below 
show that to do so, T0 would, at room temperature, have to vary 
between 600 and 1500 K, which is difficult to reconcile with the 
constant slope in the power law between S and σ.

A recent paper by Gregory et al. uses the overlap of Coulomb 
potentials of neighboring ionized dopants to define a dopant 
concentration cD dependent activation barrier WH(cD) for trans-
port.[34] Before, the same idea was explored by Arkhipov et al., 
c.f. Equation (1) in ref. [35] where the latter used the term trap-
ping instead of localization for the same effect. We note that 
associating the barrier height WH with a degree of localization 
suggests that the charge carrier is only confined by the dopant 
Coulomb potentials, which is not generally correct for organic 
semiconductors that show hopping transport at all dopant con-
centrations. The expression for WH is then used to modify a 
model from Kang and Snyder by introducing WH(cD) as an 
Arrhenius term into a transport function σE(E-Et) where Et is 
the so-called transport edge.[36] The resulting semi-localized 
transport (SLoT) model overcomes several issues of the original 
Kang-Snyder model, including the need for unrealistic positions 
of the Fermi energy to fit experimental data.[37] In passing, we 
note that the function σE(E-Et) that was used as a starting point 
by Kang-Snyder can provide accurate but entirely phenom-
enological fits to conductivity distribution functions that are 
derived from the Schmechel model for hopping transport.[38,39] 
The SLoT model can indeed provide convincing fits to experi-
mental Seebeck coefficient versus conductivity data for dif-
ferent polymers and a large conductivity range. Unfortunately, 
the model requires a dielectric constant of εr ≈ 16 which is too 
high considering that values of about εr  ≈ 3 − 4 are observed for 
many conjugated polymers[40–42] and still larger than εr ≈ 8 − 9 
of polymers with highly polarizable side chains.[43]

Here, we show that a simple semi-analytical model based 
on the Gaussian disorder model (GDM) in combination with 
an analytical expression for the energy dependent localization 
length α–1(E) can quantitatively describe the experimentally 
observed power-law trends of the conductivity with charge den-
sity at high doping concentrations using physically meaningful 
parameters. The function α–1(E) is determined on the basis of 
numerically exact solutions of a 3D tight binding model. At low 
doping concentrations, the functional shape of the well-known 
Mott variable range hopping model is recovered.

2. Experimental Results

The conductivity versus charge density data for a wide range of 
materials are assembled in Figure  1, including polythiophenes 

Figure 1.  Collection of experimental data of conductivity σ versus charge 
density n for p-doped conjugated polymers measured as part of this work 
(red) or extracted from refs. [6–12,15–18,44,45] (all data are unaligned poly-
mers). The dashed lines are power laws of varying slopes that were added to 
guide the eye. P3HT, PBTTT, P(g42T-T), P(g42T-TT), PDPP-2T and PDPP-3T 
are doped with F2TCNQ, F4TCNQ, TFSI, a polymeric ionic liquid (PIL)-TFSI 
complex, FeCl3, FeCl3/BMP-TFSI, FeCl3/LiTFSI, Mo(tfd-COCF3)3, dodecab-
orane (DDB) based dopants or Magic Blue (see Figure S2, Supporting 
Information for chemical structures and Table S3, Supporting Information 
for details about how the carrier density was estimated in each case).
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and bithiophene-thienothiophene copolymers with alkyl as well 
as oligoether side chains as well as diketopyrrolopyrrole (DPP) 
based copolymers. At high charge density, the vast majority of 
data points are confined by the black and green lines that are 
power laws (Equation  (1)) with slopes 2 and 5, respectively. In 
addition, individual data sets mostly follow power law trends. 
Similar behavior was for example observed for P3HT thin films 
or in organic transistors in refs. [10,16,35] where it was either 
interpreted in terms of Coulomb interactions or not commented 
upon. In the following, we shall demonstrate that the observed 
behavior, that is, a power law functional dependence with vari-
able slope, follows naturally when accounting for an energy 
dependent localization length in a variable range hopping model.

3. Theoretical Model

Our first aim is to obtain an expression for the energy-
dependent localization length. We therefore start with a non-
interacting Anderson-like tight binding Hamiltonian on a 
regular lattice

∑ ∑ε ν
λ ( )= + −



 +

< >

exp
2

. .†

,
0

†H a a h
a

a a h c
i

i i i

i j

NN

J

i j

� ���� ����
	 (3)

where ai† and ai are the respective creation and annihilation 
operators of charges at lattice site i of a lattice with inter-site 
distance (intermolecular distance) aNN. The expression 〈i, j〉 
denotes the summation over nearest neighbor sites and h.c. 
means Hermitian conjugated. The on-site energies εi are ran-
domly drawn from a Gaussian distribution with width or on-
site-disorder energy ΔE. For simplicity, the transfer integral J 
is taken to be equal for every site and to fall off exponentially[46] 
with distance with decay length λ, which is the localization 

length of the local Wannier orbital function of the lattice sites. 
The energy hν0 can be understood as the value at full overlap 
of two Wannier orbitals and shifts the transfer integral to rea-
sonable energy values. In general, the transfer integral can be 
calculated as the transition element

,J r r r H ri j i jω ω( ) ( )( )=ττ τ τ′ ′ 	 (4)

between the orthonormal Wannier orbitals ωτ(ri), which are 
calculated to be maximally localized or maximally molecular-
like, where τ maybe some quantum number as, for example, 
spin. At this point, we want to emphasize that we chose to 
work on a regular lattice. Since we are explicitly interested 
in the energetics of the localization length, this choice allows 
us to disentangle possible spatial correlations from ener-
getic correlations of the localization length. This is also the 
reason why counter ions are not considered since the cor-
responding Coulomb potential introduces long-range spatial 
correlations.

Given this Hamiltonian, one can now numerically diago-
nalize and extract the eigenenergies and eigenstates of the 
Hamiltonian. To do so, we used a self-written MatLab program 
that works on a 3D box of typically Ni  = 20 × 20 × 20  = 8000 
sites with periodic boundary conditions. Averages were taken 
over 5 random realizations to obtain sufficient numerical accu-
racy. The DOS can now be obtained by dividing the relevant 
energy interval, defined by the minimal and maximal calculated 
eigenenergies, into bins of appropriate width and counting the 
eigenvalues in every bin. As seen in Figure 2a, this provides a 
close to Gaussian-shaped DOS. In order to maintain consist-
ency with the original GDM, we fitted a Gaussian shape to the 
DOS to obtain the disorder σDOS. We note that the latter is not 
simply equal to ΔE. Instead, we observe that

σ ≈ ∆ +E JDOS 	 (5)

Figure 2.  a) Normalized density of states for different ratios between diagonal disorder ΔE and transfer integral J (both in meV). b) Corresponding 
localization lengths. Symbols and lines are numerical results and fits with Equations (7) and (8), respectively, where ν is a parameter from Equation (8). 
In the calculations, we used Λ  =  λ/aNN =  0.5.
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which is a useful relation to set the parameters to realistic 
values.

Denoting the components of the eigenstate vectors as Vi we 
now define the discrete inverse participation ratio (IPR)[47] as

IPR
1

4V
i i∑= 	 (6)

The IPR equals unity for a state that is localized to one lattice 
site n, as Vi = δin and equals the total number of lattice sites Ni 

for a completely delocalized state =
1

i

V
N

i for all sites i. By a 

simple dimensional consideration one can now define an esti-
mate of the localization length by taking the third root of the 
IPR[48] and multiplying with aNN. However, the distance to the 
next lattice site is not the minimal localization length in the 
system. Instead, the physical limit of localization is rather set 
by the characteristic decay length λ of the local Wannier func-
tions. We therefore arrive at the approximated expression for 
the localization length

α λ( ) ( )= − +− E 1 /1 3E IPR aNN 	 (7)

Note that in our discrete model distances are normalized to 
aNN. After averaging the localization lengths over each energy 
bin interval, we can plot the energy dependent localization 
length, c.f. Figure 2b and fit a suitable function. We empirically 
find a suitable fit with

α α
η

λ( ) = −






+
ν

− exp1
0E

E 	 (8)

where ν  =  2, 3, 4, depending on the ratio ΔE/J. For ΔE  >> J 
the most suitable value is ν = 2 and for J → ΔE we find ν = 4.  
For intermediate values of ΔE/J, that is, the most realistic ratios 
between on-site energy disorder and transfer integral, ν  = 3 
gave the best results. For this empirical model it is sufficient 
to take the fitting parameter ν integer valued. Comparing the 
DOS in Figure 2a and the localization length in Figure 2b, one 
observes a clear correlation between the two, with larger values 
of ΔE/J leading to stronger localized states, especially in the 
DOS tails, whereas the width of the DOS approximately equals 
the width of the localization length distribution.

It should be kept in mind that Figure 2 shows averaged dis-
tributions, and that the localization length of a particular state 
rather depends on its local DOS. In other words, not all states 
at a given energy have the same IPR and localization length. 
Nevertheless, we concentrate on the macroscopic behavior and 
therefore assume a scale invariant DOS, which means that the 
local DOS is the same as the macroscopic DOS, or in other 
words, we do not account for spatial correlations in the energy 
landscape.

Having extracted the localization length from the numerical 
calculation, we now use the value in a Mott–Martens-like var-
iable-range-hopping (VRH) model.[49,50] For that, we define a 
transition probability

α α( )( ) ( )( )= − + −
−





∗ ∗ ∗
∗

exp F
F

B

p E R E E
E E

k T
	 (9)

that is determined by a critical hop from the Fermi level EF to 
some, yet to be determined, transport energy E* and over a 
critical hopping distance R*, at temperature T. This approxima-
tion holds provided that the transition probability has a sharp 
maximum for some energy E*, which turns out to be the case 
here as can be seen by plotting R*(E*).[51] Note the difference to 
previous models: instead of the common term 2R*α in the first 
exponential function in the transition probability with a con-
stant inverse localization length α, we now split the exponen-
tial function into two factors. The first factor exp (−R*α(EF)) is 
the contribution to the tunneling term of the starting site at the 
Fermi level with inverse localization length α(EF), the second 
factor exp (−R*α(E*)) is the same for the final site at energy E*. 
Since we have two unknown variables here, we need another 
condition, which we get from the common percolation argu-
ment. The critical average number of bonds per lattice site to 
get a connected transport path provides the critical hopping dis-
tance as a function of the final hopping energy E*[37]

∫π ε ε( )= ∗
∗4

3
d3

F

B R gc
E

E

	 (10)

for isotropic and homogeneous media, where numerical simu-
lations determine Bc ≅ 2.8.[37] We now get the transport energy 
Etr by finding the maximum of the transition probability by dif-
ferentiation. The mobility can now be defined as μ  = μ0 p(E*)/c, 
where c is the charge carrier concentration (fraction of lattice 

sites occupied by charges) and µ
ν

σ
=0

2
0B

q aNN

DOS

, where B  =  0.47 

for a regular SC lattice.[52] From there we obtain the conduc-
tivity by σ  =  μq Nic, where q is the elementary charge and 

= −
i

3N aNN is the total site density. To rewrite the formulas in 
terms of charge density n, one has to use n  = Ni c. For the latter 
comparison, Equations (9)–(10) with α (EF) =  α (E*) =  α can be 
used to calculate the conductivity according to the conventional 
Mott–Martens model.[49,50]

4. Results and Discussion

From the data in Figure 1, we chose a representative set of dif-
ferent organic semiconductors with different dopants and fitted 
our model to the data; the result is shown in Figure 3. Despite 
the simplicity of the model, it fits the experimental data well. 
At low density, the model converges to the conventional Mott–
Martens model, as shown by the green line in panel a, which, 
for the shown densities, gives rise to a slightly super-linear 
behavior due to state filling effects. For calculation of the Mott–
Martens curve, we used the same parameters as in our model, 
set α  =  (α(EF) + α(E*))/2 for some low charge density and nor-
malized the curve to a point at low charge density; the result 
is independent of the exact density used. In the full model, a 
power law regime sets in at around 1026 m–3 that subsequently 
saturates at very high charge carrier concentrations (≈1027 m−3), 
that is, near half filling of the DOS.

The parameters used in the model calculations in Figure  3 
are summarized in Table  1. The diagonal disorder energies, 
transfer integrals with their corresponding decay lengths take 
physically reasonable values in view of previous works.[46,53,54] 
One interesting difference with previous incarnations of the 
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GDM are the fitted values of aNN. While previous GDM fits to 
experiments led to values in the range 1–2 nm, that is signifi-
cantly above an intermolecular distance, aNN here does take the 
value of an intermolecular distance (≈0.4–0.8 nm), which is con-
sistent with the assumptions of the tight binding model.[33,55] A 
further discussion of the fitting procedure and error bar estima-
tion can be found in the Supporting Information.
Figure  4 rationalizes the changes in slope observed in  

Figures  1 and  3. One can divide the localization length curve 
(panel a) into three regimes. In regime I, the charge car-
rier concentration is so low that the Fermi level (panel b) is 
located in the energy interval in which the localization length 
is about constant. Further, the transport energy is constant in 
this regime. Here, we can define a constant effective inverse 
localization length 2*αeff =  α(EF) + α(Etr) and we are therefore 
in the regime of the standard Mott–Martens model and do not 
observe a significant deviation from the latter model.

Figure 3.  Conductivity versus charge density σ(n) for a representative subset of materials from Figure 1. Symbols are the experimental data, solid lines 
are fit to the model described in the text with the parameters given in Table 1, dashed lines indicate power laws of given exponent. The first panel shows 
also the Mott–Martens model (solid green line) for comparison.

Table 1.  Fit parameters used in the simulations of Figure  3. Since the 
error calculation sometimes resulted in poor error estimates (see Sup-
porting Information for details), manual estimates for the errors are 
given as λ∆ ∆ = ∆ = ∆ = ∆ =( ) 10 meV, 0.05nm, 0.1, 10NN

NN
E a

a
J meV .

P(g42T-T) + F4TCNQ PDPP-3T + Magic Blue

aNN [nm] 0.44 0.76

λ [aNN] 0.35 0.4

ΔE [meV] 50 60

J [meV] 20.5 13.9

P3HT + FeCl3 + TFSI P(g42T-T) + F2TCNQ P3HT + F4TCNQ

aNN [nm] 0.73 0.67 0.82

λ [aNN] 0.5 0.35 0.8

ΔE [meV] 60 60 60

J [meV] 15.2 13.6 17

Adv. Funct. Mater. 2022, 2112262
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This changes when we further increase the charge density. 
At some point, the state filling has advanced to such an extent, 
that the Fermi level enters regime II where the states become 
more delocalized and we obtain a new contribution to the slope 

since ( ( )) 0
d

dn
E nF

α > . The transport energy remains close to 

constant in this regime, which explains the observed strongly 
superlinear increase of the conductivity with carrier density. 
More precisely, in the middle of regime II one can assume the 
slopes in the graphs of E(log (n)) and α(E), c.f. Figure 2b, to be 
about constant and slowly changing. Therefore we can locally 
assume α  =  const.  ×  E, EF = const. × log (n), leading directly to 
α (EF) =  const.  ×  log (n). Putting this into the transition prob-

ability we get ∝ − × × − =∗( ) exp( . log( )
.
log( ))

B

.p E R const n
const

k T
n ntr

const  

where the exponent is locally constant and slowly changing in 
the middle of regime II. The prefactors and the local slopes of 
the functions of EF in the exponential function therefore deter-
mine the slope of log (σ) vs. log (n).

After this steeper rise in conductivity, one enters a regime 
where the Fermi level approaches the transport energy and 
where the localization lengths saturate. We therefore see a sat-
uration in the conductivity. For even larger densities, roughly 
beyond relative occupations of 0.1, the present VRH model is 

likely no longer sufficient, and other physical effects like band-
like transport or sign inversions of the Seebeck coefficient 
might be expected to occur.[56] This also may be the reason why 
in Figure 1 all curves seem to saturate at a conductivity of about 
σ ≈ 103 S cm-1.

For practical applications and materials design, it is inter-
esting to investigate which parameters determine the slope in 
the power-law regime of the conductivity. By changing param-
eters and by studying the functional dependence of the involved 
parameters, we find that the relative decay length Λ = λ/aNN 
is the most critical parameter that determines the slope. To 
explain this, we look at the Fermi part of the tunneling term in 
the transition probability α∝ − + Λexp( /( ( ) ))p R EF� , where we sep-
arate the offset from the localization length: α α+ Λ =−( ( ) ) ( )1E EF F� .  
Considering the change of this term with charge density we 
arrive at

α
α

α( )
( )

( )
( )

( )
+ Λ = −

+ Λ
−

(
/1

F

2

d

dn
E n

d dn

E n
F�

�

�
	 (11)

which implies a suppression of the contribution to the slope 
for larger Λ. For lower Λ it is harder for the charge carriers to 
delocalize, so that the conductivity is lower and the threshold 
for delocalization to occur is reached at higher doping levels. 

Figure 4.  Illustration of the reason for the change of slopes in the σ(n) double-log plots Figures 1 and 3. Panel (a) shows the dependence of the locali-
zation length versus site energy, which, using the charge density dependence of the Fermi and Transport energies in panel (b) can be converted to the 
conductivity versus density relation in panel (d). Panel (c) illustrates the hopping process between two sites with different energies and localization 
length, indicated by different lengths of lines and the schematic (colored) wavefunctions. Red and blue color gradients indicate the change of Fermi 
level and transport energy with charge density n (red arrow). The indicated regions I–III in panel (d) divide the graph into the respective regimes of 
linear, power-law, and saturation behavior of the conductivity.
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However, once the threshold is reached this process happens 
quite fast with rising doping concentration. On the other 
hand, for higher Λ, delocalization is easier and happens more 
smoothly. Since Λ seems to be a crucial quantity in our model, 
it may be possible to extract information about the electronic 
coupling of the OSC from conductivity measurements at high 
doping concentrations.

In addition, looking at the general shape of the localization 
length curve Figure 2b, a shorter rise in α–1(E) therefore usually 
means a steeper and narrower region of superlinear growth. As 
discussed previously, the shape of this curve is closely related to 
that of the DOS, so one may engineer the localization properties 
by controlling the DOS. In general, the width of the DOS gives 
the approximate width of the localization distribution. What is 
more important is the scaling of the localization length distri-
bution, which is very sensitive to changes in the transfer inte-
gral, meaning that larger transfer integrals result in an increase 
in localization length, while being less sensitive to changes in 
on-site-energetical disorder, where less disorder improves delo-
calization. This effect is independent of any additional changes 
in overlap that would most likely further enhance this trend.

As a practical illustration of the preceding discussion, one 
may consider the experimentally well-documented effects 
of chain stiffening and increasing conjugation length upon 
doping.[6,57–59] Although these effects cannot be accounted for 
explicitly in the present model, they are expected to improve the 
delocalization, both directly, via increased transfer integrals due 
to a larger overlap between neighboring sites, and indirectly, 
by a reduction of the on-site-energy disorder. Likewise, a high 
degree of regioregularity or rigidity of the molecular backbone 
will also enhance delocalization.

Also, since the transport energy is largely constant, it is 
beneficial to have a large DOS at the Fermi level, which for 
example has been argued to be achievable by molecules with a 
large dielectric constant.[25,60] Finally, as a design rule, the con-
ductivity at constant charge carrier concentration c = n/Ni can 
be improved by decreasing the intermolecular distance aNN. 
Although this would (quadratically) decrease the mobility pref-
actor μ0, the overall conductivity prefactor qμ0n would (linearly) 
increase due to the (cubic) increase of Ni and, at constant c, n 
with aNN. Probably more importantly, the transfer integral J, 
Equation (3), will, at approximately constant localization length, 
increase exponentially with decreasing aNN. Experimentally, this 
could be achieved in polymers with shorter side chains or the 
use of smaller, better intercalating dopant ions.[15,61] Evidently, 
the value of Λ = λ/aNN, which determines the orbital overlap 
of neighboring molecules should in general be as large as 
possible.

5. Conclusion

We assembled a large number of experimental data of conduc-
tivity versus charge density and observed a power-law trend 
with exponents in the range 2 to 5 for charge densities above  
≈1026 m–3. To explain this, we developed a semi-analytical model 
to include the energy dependence of the localization length into 
a Mott-like transport model. The energy dependence of the local-
ization length was estimated from the inverse participation ratio 

of the eigenvectors of a tight binding Hamiltonian. We find that 
we reproduce Mott-like behavior of the conductivity for low to 
intermediate charge carrier concentrations, while describing the 
experimentally observed power-law trend for higher charge car-
rier densities. This behavior could be explained with the charge 
delocalization at the Fermi level. Finally, we find convincing 
agreement with diverse experimental data for different conju-
gated polymers p-doped with a range of different dopants with 
meaningful physical parameters. Our model reveals the impor-
tance of considering the energy dependence of the localization 
parameters relevant for charge transport. Further, the developed 
model may provide details about the electronic coupling of the 
doped OSC from studying the conductivity at high doping levels.

6. Experimental Section
Materials: P3HT (number-average molecular weight Mn = 24 kg mol –1,  

polydispersity index = 2.4, regioregularity ≈ 88%) was purchased 
from Solaris Chem and Poly[[2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-
3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl]-alt-[3′,3′′-dimethyl-2,2′:5′,2′′-
terthiophene]-5,5′′-diyl] (PDPP-3T; Mn = 83 kg mol–1, polydispersity index 
= 2.1) was purchased from Solarmer [(4-BrC6H4)3N]SbCl6 (Magic Blue) 
and anhydrous acetonitrile (AcN) were purchased from Sigma Aldrich. 
Chlorobenzene (CB) and chloroform (CHCl3) were obtained from VWR. 
All polymers, solvents and dopants were used as received. Full chemical 
structures of polymers and dopants used in this work are shown in 
Figure S2, Supporting Information.

Sample Preparation: P3HT and PDPP-3T were dissolved in CB (10 g L–1 
and 8.5  g L–1) and the solutions were spin cast onto CaF2 substrates 
yielding a film thickness of ≈50 and 100 nm, respectively. The polymer 
films coated on CaF2 were sequentially doped with a solution of Magic 
Blue in AcN (0.15–0.5 g L–1) by immersing the films into solutions with 
different concentrations during 30 s for PDPP-3T and 60 s for P3HT.

UV–Vis Absorption Spectroscopy: UV–vis-NIR spectra were recorded 
with a PerkinElmer Lambda 1050 spectrophotometer.

Electrical Characterization: The electrical resistivity was measured 
with a four-point probe setup from Jandel Engineering (cylindrical 
probe head, RM3000) using collinear tungsten carbide electrodes with 
equidistant spacing of 1 mm that were held down with a constant weight 
of 60 g. The electrical conductivity (σ) was then calculated according to 
σ−1 = (V/I) · kt where V is the voltage, I the current, k = 4.53 a geometrical 
correction factor, and t the film thickness.

Determination of Oxidation Level: To estimate the charge-carrier 
density Nν of the molecularly doped polymers the Beer–Lambert law 
Apolaron  = εpolaron · t · Nv was used, where Apolaron is the absorbance of 
the first sub-bandgap polaronic absorption peak and εpolaron the molar 
attenuation coefficient with a value of εpolaron  = 4.1⋅103 m2 mol–1 at 
800 nm in case of P3HT and εpolaron = 6.0⋅103 m2 mol–1 at 1200 nm in case 
of PDPP-3T (see Figure S4, Supporting Information for representative 
UV–vis-NIR absorbance spectrum of doped PDPP-3T), obtained through 
a combination of spectro-electrochemistry and chronoamperometry.[12,18]

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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