65 research outputs found

    Approaches to the Design of Biotechnical Streambank Stabilization: Volume I—A Guide to the Literature

    Get PDF
    Streambank stabilization has traditionally been performed with riprap for which reliable design and installation procedures are available. Due to concerns about the environmental impact of riprap, there has been increasing interest in more natural biotechnical (or bioengineering) alternatives. A review of the litera­ture on biotechnical approaches to streambank stabilization has been per­formed, with a focus on those works that might be particularly useful in developing design guidelines or standards for the Indiana Department of Transportation. Works that synthesized the literature (up to about the year 2000) and so covered a broad range of topics, were examined, including monographs and manuals published by federal and state agencies. More recent publications were also found on narrower more specific topics, including the ecological effects of riprap and bio­technical approaches, advances in the geotechnical modeling of vegetation effects on bank stability, the effectiveness of biotechnical measures, and screening methods for selecting appropriate measures. Implications of the reviewed work for the development of design guidelines are discussed

    Approaches to the Design of Biotechnical Streambank Stabilization: Volume III—Design Guidelines

    Get PDF
    A conceptual framework for the design of biotechnical streambank revetment is proposed. It is intended to be simple in practice, flexible in being widely applicable, familiar in retaining cer­tain aspects of current practice while being patterned after other aspects, and encouraging a more environmentally sensitive approach to reliable streambank protection for INDOT projects. It distinguishes between a toe zone, where traditional hard armoring techniques such as those already included in the INDOT standard designs are more appropriate, and an upper bank zone where vegetation-based techniques would typically be applied. Default techniques are identified to simplify the choice of measures for \u27routine\u27 problems, but more case-specific techniques may also be selected. Primary techniques that offer immediate protection on their own are also distin­guished from supplementary techniques that are used only in combination with other (primary) techniques. The boundary between the toe zone and the upper bank zone is proposed to be the maximum of the ordinary high water mark (or bankfull elevation), the elevation corresponding to the 2-year discharge, and the elevation corresponding to the point that is one third up the slope from the bank toe at the design discharge (for streambank protection). For the upper bank zone, for bank slopes up to 2H:1V, regrading and revegetation with herbaceous species together with the use of rolled erosion control products (RECPs) is proposed as the default. The other (non-default) main primary technique for the upper bank zone is the vegetated mechanically stabilized earth (VMSE, or vegetated reinforced soil slope VRSS, or soil lifts) option (where revegetation with herbaceous species is also considered standard). This requires more engineering and construct­ion effort but is appropriate for those projects where a more vertical (up to maximum bank slope of 1H:1V) solution is desired. The supplementary techniques to be included are live staking to be used with the regrading option, and brush-layering to be used with the VMSE option

    Approaches to the Design of Biotechnical Streambank Stabilization: Volume II—A Field Assessment

    Get PDF
    As part of a larger project to develop guidelines for the design of biotechnical approaches to streambank stabilization to be included in INDOT standard designs and specifications, a field assessment was undertaken of 26 sites, of which 13 were INDOT sites. Multiple techniques were frequently installed in combination, which resulted in 47 samples of 12 different techniques at the 26 sites. Each site was visited at least once and the measures were visually inspected for evi­dence of damage either to the measure or to the streambank being protected. Some of the field assessments were supplemented by interviews with designers involved in the INDOT projects; the general merits of biotechnical techniques were discussed together with those of specific tech­niques that might be included in a standard design. The assessment resulted in grouping the techniques into three broad categories: i) typically reliable techniques that could be used where tolerance for bank instability is very low, and generally involving hard armor, ii) potentially reliable techniques where the tolerance for bank instability is low to moderate, and iii) techniques that are appropriate only for special circumstances or to be used only in combination with measures from the other two groups

    A comparison of European eel Anguilla anguilla eDNA concentrations to fyke net catches in five Irish lakes

    Get PDF
    The European eel, Anguilla anguilla, is classified as critically endangered by the IUCN. To protect what remains of the European eel population, accurate monitoring methods for this species are important. Environmental DNA (eDNA) techniques are gaining popularity for ecological monitoring of aquatic organisms because they are sensitive and non-invasive. This study directly compared catch data from a standardised fyke-net fishing survey with a single species A. anguilla eDNA survey in five freshwater lakes in Ireland. The eDNA was recovered by the filtration of water samples and amplified by quantitative real-time Polymerase Chain Reaction (qPCR). European eel eDNA was reliably determined in 83 % (70/84) of surface water samples collected from lakes classified as having high, medium and low eel populations. In addition there was a positive association between the eDNA concentrations recovered and the eel population classification with lower eDNA concentrations in lakes classified as low eel population lakes. Similar amounts of A. anguilla eDNA were detected in water samples collected from open water and shore-side, suggesting shore sampling is an adequate method for eel detection. Together, the results demonstrate that eDNA sampling is more sensitive for detecting eel presence in low eel population environments than standard survey methods, and may be a useful non-invasive tool for monitoring A. anguilla species distribution

    An anodic stripping voltammetric approach for total mercury determination in sea sponges from the Niger Delta region of Nigeria

    Get PDF
    Mercury pollution threatens aquatic ecosystems and human health in the Niger Delta, Nigeria, due to crude oil refining and waste disposal. Accurate mercury measurement in this region is challenging because of the complex marine samples and low mercury concentrations. Traditional methods often lack the necessary sensitivity and precision. This research presents a novel analytical method using differential pulse anodic stripping voltammetry (DPASV) with a glassy carbon electrode (GCE) to determine mercury levels in marine sponge samples from the Niger Delta. Using a 2.36 M HCl + 2.4 M NaCl supporting electrolyte, -0.6 V deposition potential, and 300 s deposition time, mercury levels were found to range between 20.8–17.2 ng/g, 9.52–6.98 ng/g, and 14.35–10.51 ng/g for Ibotirem, Samanga, and Kaa, respectively. The DPASV method is cost-effective, user-friendly, and highly sensitive. It is ideal for trace-level mercury detection in complex environmental samples like sea sponges, which serve as bio-monitors

    Long-term annual and monthly changes in mysids and caridean decapods in a macrotidal estuarine environment in relation to climate change and pollution

    Get PDF
    © 2018 Elsevier B.V. A 26-year time series of monthly samples from the water intake of a power station has been used to analyse the trends exhibited by number of species, total abundance, and composition of the mysids and caridean decapods in the inner Bristol Channel. During this period, annual water temperatures, salinities and the North Atlantic Oscillation Index (NAOI) in winter did not change significantly, whereas annual NAOI declined. Annual mean monthly values for the number of species and total abundance both increased over the 26 years, but these changes were not correlated with any of the measured physico-chemical/climatic factors. As previous studies demonstrated that, during a similar period, metal concentrations in the Severn Estuary and Bristol Channel (into which that estuary discharges) declined and water quality increased, it is proposed that the above changes are due to an improved environment. The fauna was dominated by the mysids Mesopodopsis slabberi and Schistomysis spiritus, which collectively contributed 94% to total abundance. Both species, which were represented by juveniles, males, non-brooding females and brooding females, underwent statistically-indistinguishable patterns of change in abundance over the 26 years. When analysis was based on the abundances of the various species, the overall species composition differed significantly among years and changed serially with year. When abundances were converted to percentage compositions, this pattern of seriation broke down, demonstrating that changes in abundance and not percentage composition were responsible for the seriation. As with the number and abundance of species, changes in composition over the 26 years were not related to any of the physico-chemical/climatic factors tested. Species composition changed monthly in a pronounced cyclical manner throughout the year, due to statistically different time-staggered changes in the abundance of each species. This cyclicity was related most strongly to salinity

    Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    BACKGROUND: Measurement of changes in health across locations is useful to compare and contrast changing epidemiological patterns against health system performance and identify specific needs for resource allocation in research, policy development, and programme decision making. Using the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we drew from two widely used summary measures to monitor such changes in population health: disability-adjusted life-years (DALYs) and healthy life expectancy (HALE). We used these measures to track trends and benchmark progress compared with expected trends on the basis of the Socio-demographic Index (SDI). METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2016. We calculated DALYs by summing years of life lost and years of life lived with disability for each location, age group, sex, and year. We estimated HALE using age-specific death rates and years of life lived with disability per capita. We explored how DALYs and HALE differed from expected trends when compared with the SDI: the geometric mean of income per person, educational attainment in the population older than age 15 years, and total fertility rate. FINDINGS: The highest globally observed HALE at birth for both women and men was in Singapore, at 75·2 years (95% uncertainty interval 71·9-78·6) for females and 72·0 years (68·8-75·1) for males. The lowest for females was in the Central African Republic (45·6 years [42·0-49·5]) and for males was in Lesotho (41·5 years [39·0-44·0]). From 1990 to 2016, global HALE increased by an average of 6·24 years (5·97-6·48) for both sexes combined. Global HALE increased by 6·04 years (5·74-6·27) for males and 6·49 years (6·08-6·77) for females, whereas HALE at age 65 years increased by 1·78 years (1·61-1·93) for males and 1·96 years (1·69-2·13) for females. Total global DALYs remained largely unchanged from 1990 to 2016 (-2·3% [-5·9 to 0·9]), with decreases in communicable, maternal, neonatal, and nutritional (CMNN) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). The exemplars, calculated as the five lowest ratios of observed to expected age-standardised DALY rates in 2016, were Nicaragua, Costa Rica, the Maldives, Peru, and Israel. The leading three causes of DALYs globally were ischaemic heart disease, cerebrovascular disease, and lower respiratory infections, comprising 16·1% of all DALYs. Total DALYs and age-standardised DALY rates due to most CMNN causes decreased from 1990 to 2016. Conversely, the total DALY burden rose for most NCDs; however, age-standardised DALY rates due to NCDs declined globally. INTERPRETATION: At a global level, DALYs and HALE continue to show improvements. At the same time, we observe that many populations are facing growing functional health loss. Rising SDI was associated with increases in cumulative years of life lived with disability and decreases in CMNN DALYs offset by increased NCD DALYs. Relative compression of morbidity highlights the importance of continued health interventions, which has changed in most locations in pace with the gross domestic product per person, education, and family planning. The analysis of DALYs and HALE and their relationship to SDI represents a robust framework with which to benchmark location-specific health performance. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform health policies, health system improvement initiatives, targeted prevention efforts, and development assistance for health, including financial and research investments for all countries, regardless of their level of sociodemographic development. The presence of countries that substantially outperform others suggests the need for increased scrutiny for proven examples of best practices, which can help to extend gains, whereas the presence of underperforming countries suggests the need for devotion of extra attention to health systems that need more robust support. FUNDING: Bill & Melinda Gates Foundation

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress

    Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    The Global Burden of Diseases, Injuries and Risk Factors 2017 includes a comprehensive assessment of incidence, prevalence, and years lived with disability (YLDs) for 354 causes in 195 countries and territories from 1990 to 2017. Previous GBD studies have shown how the decline of mortality rates from 1990 to 2016 has led to an increase in life expectancy, an ageing global population, and an expansion of the non-fatal burden of disease and injury. These studies have also shown how a substantial portion of the world's population experiences non-fatal health loss with considerable heterogeneity among different causes, locations, ages, and sexes. Ongoing objectives of the GBD study include increasing the level of estimation detail, improving analytical strategies, and increasing the amount of high-quality data. METHODS: We estimated incidence and prevalence for 354 diseases and injuries and 3484 sequelae. We used an updated and extensive body of literature studies, survey data, surveillance data, inpatient admission records, outpatient visit records, and health insurance claims, and additionally used results from cause of death models to inform estimates using a total of 68 781 data sources. Newly available clinical data from India, Iran, Japan, Jordan, Nepal, China, Brazil, Norway, and Italy were incorporated, as well as updated claims data from the USA and new claims data from Taiwan (province of China) and Singapore. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between rates of incidence, prevalence, remission, and cause of death for each condition. YLDs were estimated as the product of a prevalence estimate and a disability weight for health states of each mutually exclusive sequela, adjusted for comorbidity. We updated the Socio-demographic Index (SDI), a summary development indicator of income per capita, years of schooling, and total fertility rate. Additionally, we calculated differences between male and female YLDs to identify divergent trends across sexes. GBD 2017 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting
    corecore