39 research outputs found

    Integrating GWAS and Transcriptomics to Identify the Molecular Underpinnings of Thermal Stress Responses in \u3cem\u3eDrosophila melanogaster\u3c/em\u3e

    Get PDF
    Thermal tolerance of an organism depends on both the ability to dynamically adjust to a thermal stress and preparatory developmental processes that enhance thermal resistance. However, the extent to which standing genetic variation in thermal tolerance alleles influence dynamic stress responses vs. preparatory processes is unknown. Here, using the model species Drosophila melanogaster, we used a combination of Genome Wide Association mapping (GWAS) and transcriptomic profiling to characterize whether genes associated with thermal tolerance are primarily involved in dynamic stress responses or preparatory processes that influence physiological condition at the time of thermal stress. To test our hypotheses, we measured the critical thermal minimum (CTmin) and critical thermal maximum (CTmax) of 100 lines of the Drosophila Genetic Reference Panel (DGRP) and used GWAS to identify loci that explain variation in thermal limits. We observed greater variation in lower thermal limits, with CTmin ranging from 1.81 to 8.60°C, while CTmax ranged from 38.74 to 40.64°C. We identified 151 and 99 distinct genes associated with CTmin and CTmax, respectively, and there was strong support that these genes are involved in both dynamic responses to thermal stress and preparatory processes that increase thermal resistance. Many of the genes identified by GWAS were involved in the direct transcriptional response to thermal stress (72/151 for cold; 59/99 for heat), and overall GWAS candidates were more likely to be differentially expressed than other genes. Further, several GWAS candidates were regulatory genes that may participate in the regulation of stress responses, and gene ontologies related to development and morphogenesis were enriched, suggesting many of these genes influence thermal tolerance through effects on development and physiological status. Overall, our results suggest that thermal tolerance alleles can influence both dynamic plastic responses to thermal stress and preparatory processes that improve thermal resistance. These results also have utility for directly comparing GWAS and transcriptomic approaches for identifying candidate genes associated with thermal tolerance

    Predicting attitudinal and behavioral responses to COVID-19 pandemic using machine learning

    Get PDF
    At the beginning of 2020, COVID-19 became a global problem. Despite all the efforts to emphasize the relevance of preventive measures, not everyone adhered to them. Thus, learning more about the characteristics determining attitudinal and behavioral responses to the pandemic is crucial to improving future interventions. In this study, we applied machine learning on the multinational data collected by the International Collaboration on the Social and Moral Psychology of COVID-19 (N = 51,404) to test the predictive efficacy of constructs from social, moral, cognitive, and personality psychology, as well as socio-demographic factors, in the attitudinal and behavioral responses to the pandemic. The results point to several valuable insights. Internalized moral identity provided the most consistent predictive contribution—individuals perceiving moral traits as central to their self-concept reported higher adherence to preventive measures. Similar results were found for morality as cooperation, symbolized moral identity, self-control, open-mindedness, and collective narcissism, while the inverse relationship was evident for the endorsement of conspiracy theories. However, we also found a non-neglible variability in the explained variance and predictive contributions with respect to macro-level factors such as the pandemic stage or cultural region. Overall, the results underscore the importance of morality-related and contextual factors in understanding adherence to public health recommendations during the pandemic.Peer reviewe

    National identity predicts public health support during a global pandemic

    Get PDF
    Changing collective behaviour and supporting non-pharmaceutical interventions is an important component in mitigating virus transmission during a pandemic. In a large international collaboration (Study 1, N = 49,968 across 67 countries), we investigated self-reported factors associated with public health behaviours (e.g., spatial distancing and stricter hygiene) and endorsed public policy interventions (e.g., closing bars and restaurants) during the early stage of the COVID-19 pandemic (April-May 2020). Respondents who reported identifying more strongly with their nation consistently reported greater engagement in public health behaviours and support for public health policies. Results were similar for representative and non-representative national samples. Study 2 (N = 42 countries) conceptually replicated the central finding using aggregate indices of national identity (obtained using the World Values Survey) and a measure of actual behaviour change during the pandemic (obtained from Google mobility reports). Higher levels of national identification prior to the pandemic predicted lower mobility during the early stage of the pandemic (r = −0.40). We discuss the potential implications of links between national identity, leadership, and public health for managing COVID-19 and future pandemics.publishedVersio

    National identity predicts public health support during a global pandemic (vol 13, 517, 2022) : National identity predicts public health support during a global pandemic (Nature Communications, (2022), 13, 1, (517), 10.1038/s41467-021-27668-9)

    Get PDF
    Publisher Copyright: © The Author(s) 2022.In this article the author name ‘Agustin Ibanez’ was incorrectly written as ‘Augustin Ibanez’. The original article has been corrected.Peer reviewe

    Author Correction: National identity predicts public health support during a global pandemic

    Get PDF
    Correction to: Nature Communications https://doi.org/10.1038/s41467-021-27668-9, published online 26 January 2022

    Data from: Maternal loading of a small heat shock protein increases embryo thermal tolerance in Drosophila melanogaster

    No full text
    Maternal investment is likely to have direct effects on offspring survival. In oviparous animals whose embryos are exposed to the external environment, maternal provisioning of molecular factors like mRNAs and proteins may help embryos cope with sudden changes in the environment. Here we sought to modify the maternal mRNA contribution to offspring embryos and test for maternal effects on acute thermal tolerance in early embryos of Drosophila melanogaster. We drove in vivo overexpression of a small heat shock protein gene (Hsp23) in female ovaries and measured the effects of acute thermal stress on offspring embryonic survival and larval development. We report that overexpression of the Hsp23 gene in female ovaries produced offspring embryos with increased thermal tolerance. We also found that brief heat stress in the early embryonic stage (0 to 1 hour-old) caused decreased larval performance later in life (5 to 10 days-old), as indexed by pupation height. Maternal overexpression of Hsp23 protected embryos against this heat-induced defect in larval performance. Our data demonstrate that transient products of single genes have large and lasting effects on whole-organism environmental tolerance. Further, our results suggest that maternal effects have a profound impact on offspring survival in the context of thermal variability

    Thermal phenotypic data and qPCR data

    No full text
    Data are organized into separate sheets in the .xlsx file. Use the tabs to access each subset of the data
    corecore