5,560 research outputs found
Non-Equilibrium Modeling of the Fe XVII 3C/3D ratio for an Intense X-ray Free Electron Laser
We present a review of two methods used to model recent LCLS experimental
results for the 3C/3D line intensity ratio of Fe XVII (Bernitt et al. 2012),
the time-dependent collisional-radiative method and the density-matrix
approach. These are described and applied to a two-level atomic system excited
by an X-ray free electron laser. A range of pulse parameters is explored and
the effects on the predicted Fe XVII 3C and 3D line intensity ratio are
calculated. In order to investigate the behavior of the predicted line
intensity ratio, a particular pair of A-values for the 3C and 3D transitions
was chosen (2.22 10 s and 6.02 10
s for the 3C and 3D, respectively), but our conclusions are independent
of the precise values. We also reaffirm the conclusions from Oreshkina et
al.(2014, 2015): the non-linear effects in the density matrix are important and
the reduction in the Fe XVII 3C/3D line intensity ratio is sensitive to the
laser pulse parameters, namely pulse duration, pulse intensity, and laser
bandwidth. It is also shown that for both models the lowering of the 3C/3D line
intensity ratio below the expected time-independent oscillator strength ratio
has a significant contribution due to the emission from the plasma after the
laser pulse has left the plasma volume. Laser intensities above W/cm are required for a reduction in the 3C/3D line intensity
ratio below the expected time independent oscillator strength ratio
Influence of bearing kinematics hypotheses on ball bearing heat generation
Spindle dynamics is a key issue in machining. Thermo-mechanical models of spindle need to be developed to understand and predict the complex behavior of spindles at high speed. Accurate bearing stiffness model is required, since it is a boundary condition of the shaft. Besides, bearings also play an important role in heat generation in the spindle. Bearing models rely on kinematics hypotheses at the ball-race contacts. The aim of the paper is to study the influence of these kinematics hypotheses on bearing heat generation. The different kinematics hypotheses that can be found in literature are presented and implemented into the bearing friction model. Simulations of bearing dynamics are performed and contact force and torque at ball-race contacts are compared. Behavior of the bearing models with different kinematic models is studied using a coupled thermo-mechanical model of a specialized test bed. Loss torque and temperatures simulated are compared and validated by experiments
Varicellovirus UL 49.5 proteins differentially affect the function of the transporter associated with antigen processing, TAP
Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class I–restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL49.5 proteins block TAP as well, these data indicate that UL49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL49.5. Taken together, these results classify the UL49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms
A large-scale R-matrix calculation for electron-impact excitation of the Ne O-like ion
The five J levels within a or ground state complex provide
an excellent testing ground for the comparison of theoretical line ratios with
astrophysically observed values, in addition to providing valuable electron
temperature and density diagnostics. The low temperature nature of the line
ratios ensure that the theoretically derived values are sensitive to the
underlying atomic structure and electron-impact excitation rates. Previous
R-matrix calculations for the Ne O-like ion exhibit large spurious
structure in the cross sections at higher electron energies, which may affect
Maxwellian averaged rates even at low temperatures. Furthermore, there is an
absence of comprehensive excitation data between the excited states that may
provide newer diagnostics to compliment the more established lines discussed in
this paper. To resolve these issues, we present both a small scale 56-level
Breit-Pauli (BP) calculation and a large-scale 554 levels R-matrix Intermediate
Coupling Frame Transformation (ICFT) calculation that extends the scope and
validity of earlier JAJOM calculations both in terms of the atomic structure
and scattering cross sections. Our results provide a comprehensive
electron-impact excitation data set for all transitions to higher shells.
The fundamental atomic data for this O-like ion is subsequently used within a
collisional radiative framework to provide the line ratios across a range of
electron temperatures and densities of interest in astrophysical observations.Comment: 17 pages, 8 figure
Lower entropy bounds and particle number fluctuations in a Fermi sea
We demonstrate, in an elementary manner, that given a partition of the single
particle Hilbert space into orthogonal subspaces, a Fermi sea may be factored
into pairs of entangled modes, similar to a BCS state. We derive expressions
for the entropy and for the particle number fluctuations of a subspace of a
fermi sea, at zero and finite temperatures, and relate these by a lower bound
on the entropy. As an application we investigate analytically and numerically
these quantities for electrons in the lowest Landau level of a quantum Hall
sample.Comment: shorter version, typos fixe
Recommended from our members
Electron-Impact Ionization of Be-like C III, N IV, and O V
We present recent measurements of absolute electron-impact ionization cross sections for Be-like C III, N IV, and O V forming Li-like C IV, N V, and O VI. The measurements were taken using the crossed-beams apparatus at Oak Ridge National Laboratory. A gas cell beam attenuation method was used to independently measure the metastable fractions present in the ion beams. The measured ionization cross sections were compared with calculations using the R-matrix with pseudostates and distorted-wave theoretical methods. Best agreement is found with the R-matrix with pseudostates cross sections results that account for the metastable fractions inferred from the gas attenuation measurements. We present a set of recommended rate coefficients for electron-impact single ionization from the ground state and metastable term of each ion
Ionization state, excited populations and emission of impurities in dynamic finite density plasmas: I. The generalized collisional-radiative model for light elements
The paper presents an integrated view of the population structure and its role in establishing the ionization state of light elements in dynamic, finite density, laboratory and astrophysical plasmas. There are four main issues, the generalized collisional-radiative picture for metastables in dynamic plasmas with Maxwellian free electrons and its particularizing to light elements, the methods of bundling and projection for manipulating the population equations, the systematic production/use of state selective fundamental collision data in the metastable resolved picture to all levels for collisonal-radiative modelling and the delivery of appropriate derived coefficients for experiment analysis. The ions of carbon, oxygen and neon are used in illustration. The practical implementation of the methods described here is part of the ADAS Project
Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector
The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry
Structural variation, dynamics, and catalytic application of palladium(II) complexes of di-N-heterocyclic carbene-amine ligands
A series of palladium(II) complexes incorporating di-NHC-amine ligands has been prepared and their structural, dynamic and catalytic behaviour investigated. The complexes [trans-(k(2)-(CN)-C-tBu(Bn)CN(Bn)C-tBu)PdCl2] (12) and [trans-(kappa(2)-(CN)-C-Mes(H)C-Mes)PdCl2] (13) do not exhibit interaction between the amine nitrogen and palladium atom respectively. NMR spectroscopy between - 40 and 25 degrees C shows that the di-NHC-amine ligand is flexible expressing C-s symmetry and for 13 rotation of the mesityl groups is prevented. In the related C-1 complex [(kappa(3)-(CN)-C-tBu(H)C-tBu)PdCl][CI] (14) coordination of NHC moieties and amine nitrogen atom is observed between -40 and 25 degrees C. Reaction between 12 - 14 and two equivalents of AgBF4 in acetonitrile gives the analogous complexes [trans-(kappa(2)-(CN)-C-tBu(Bn)C-tBu)PdCl2] (12) and [trans-(kappa(CN)-C-2Mes(H)C-Mes)PdCl2] (13) do not exhibit interaction between the amine nitrogen and palladium atom respectively. NMR spectroscopy between -40 ans 25 degrees C shows the di-NHC-amine ligand is flexible expressing C-s symmetry and for 13 rotation of the mesityl groups is prevented. In the related C-1 complex [kappa(3)-(CN)-C-tBu(H)C-tBu)PdCI][CI] (14) coordination of NHC moieties and amine nitrogen atom is observed between -40 and 25 degrees C.Reaction between 12-14 and two equivalents of AgBF4 in acetonitrile gives the analogous complexes [trans-(kappa(2)-(CN)-C-tBu(H)(CPd)-Pd-tBu(MeCN)(2)][BF4](2) (15), [trans-(kappa(CN)-C-2Mes(H)C-Mes)Pd(MeCN)(2)[BF4](2 (16)) and [(kappa(3)-(CN)-C-tBu(H)C-tBu)Pd(MeCN)][BF4](2) (17) indicating that ligand structure determines amine coordination. The single crystal X-ray structures of 12, 17 and two ligand imidazolium salt precursors C-tBu(H)N(Bn)C(H) (tBu)][CI](2) (2) and [C-tBu(H) N(H)C(H)(tBu)][BPh4](2) (4) have been determined. Complexes 12-14 and 15-17 have been shown to be active precatalysts for Heck and hydroamination reactions respectively
Inclusive search for same-sign dilepton signatures in pp collisions at root s=7 TeV with the ATLAS detector
An inclusive search is presented for new physics in events with two isolated leptons (e or mu) having the same electric charge. The data are selected from events collected from p p collisions at root s = 7 TeV by the ATLAS detector and correspond to an integrated luminosity of 34 pb(-1). The spectra in dilepton invariant mass, missing transverse momentum and jet multiplicity are presented and compared to Standard Model predictions. In this event sample, no evidence is found for contributions beyond those of the Standard Model. Limits are set on the cross-section in a fiducial region for new sources of same-sign high-mass dilepton events in the ee, e mu and mu mu channels. Four models predicting same-sign dilepton signals are constrained: two descriptions of Majorana neutrinos, a cascade topology similar to supersymmetry or universal extra dimensions, and fourth generation d-type quarks. Assuming a new physics scale of 1 TeV, Majorana neutrinos produced by an effective operator V with masses below 460 GeV are excluded at 95% confidence level. A lower limit of 290 GeV is set at 95% confidence level on the mass of fourth generation d-type quarks
- …
