644 research outputs found
Pre - Inflationary Clues from String Theory ?
"Brane supersymmetry breaking" occurs in String Theory when the only
available combinations of D-branes and orientifolds are not mutually BPS and
yet do not introduce tree-level tachyon instabilities. It is characterized by
the emergence of a steep exponential potential, and thus by the absence of
maximally symmetric vacua. The corresponding low-energy supergravity admits
intriguing spatially-flat cosmological solutions where a scalar field is forced
to climb up toward the steep potential after an initial singularity, and
additional milder terms can inject an inflationary phase during the ensuing
descent. We show that, in the resulting power spectra of scalar perturbations,
an infrared suppression is typically followed by a pre-inflationary peak that
reflects the end of the climbing phase and can lie well apart from the
approximately scale invariant profile. A first look at WMAP9 raw data shows
that, while the chi^2 fits for the low-l CMB angular power spectrum are clearly
compatible with an almost scale invariant behavior, they display nonetheless an
eye-catching preference for this type of setting within a perturbative string
regime.Comment: 34 pages, LaTeX, 16 eps figures. Relative displacement in fig. 14 and
some typos corrected, references and acknowledgments updated. To appear in
JCA
Comparisons of Statistical Multifragmentation and Evaporation Models for Heavy Ion Collisions
The results from ten statistical multifragmentation models have been compared
with each other using selected experimental observables. Even though details in
any single observable may differ, the general trends among models are similar.
Thus these models and similar ones are very good in providing important physics
insights especially for general properties of the primary fragments and the
multifragmentation process. Mean values and ratios of observables are also less
sensitive to individual differences in the models. In addition to
multifragmentation models, we have compared results from five commonly used
evaporation codes. The fluctuations in isotope yield ratios are found to be a
good indicator to evaluate the sequential decay implementation in the code. The
systems and the observables studied here can be used as benchmarks for the
development of statistical multifragmentation models and evaporation codes.Comment: To appear on Euorpean Physics Journal A as part of the Topical Volume
"Dynamics and Thermodynamics with Nuclear Degrees of Freedo
Algebraic approach to quantum black holes: logarithmic corrections to black hole entropy
The algebraic approach to black hole quantization requires the horizon area
eigenvalues to be equally spaced. As shown previously, for a neutral
non-rotating black hole, such eigenvalues must be -fold degenerate if
one constructs the black hole stationary states by means of a pair of creation
operators subject to a specific algebra. We show that the algebra of these two
building blocks exhibits symmetry, where the area
operator generates the U(1) symmetry. The three generators of the SU(2)
symmetry represent a {\it global} quantum number (hyperspin) of the black hole,
and we show that this hyperspin must be zero. As a result, the degeneracy of
the -th area eigenvalue is reduced to for large , and
therefore, the logarithmic correction term should be added to the
Bekenstein-Hawking entropy. We also provide a heuristic approach explaining
this result, and an evidence for the existence of {\it two} building blocks.Comment: 15 pages, Revtex, to appear in Phys. Rev.
Parity-violating neutron spin rotation in hydrogen and deuterium
We calculate the (parity-violating) spin rotation angle of a polarized
neutron beam through hydrogen and deuterium targets, using pionless effective
field theory up to next-to-leading order. Our result is part of a program to
obtain the five leading independent low-energy parameters that characterize
hadronic parity-violation from few-body observables in one systematic and
consistent framework. The two spin-rotation angles provide independent
constraints on these parameters. Using naive dimensional analysis to estimate
the typical size of the couplings, we expect the signal for standard target
densities to be 10^-7 to 10^-6 rad/m for both hydrogen and deuterium targets.
We find no indication that the nd observable is enhanced compared to the np
one. All results are properly renormalized. An estimate of the numerical and
systematic uncertainties of our calculations indicates excellent convergence.
An appendix contains the relevant partial-wave projectors of the three-nucleon
system.Comment: 44 pages, 17 figures; minor corrections; to be published in EPJ
Cosmological Perturbations in a Big Crunch/Big Bang Space-time
A prescription is developed for matching general relativistic perturbations
across singularities of the type encountered in the ekpyrotic and cyclic
scenarios i.e. a collision between orbifold planes. We show that there exists a
gauge in which the evolution of perturbations is locally identical to that in a
model space-time (compactified Milne mod Z_2) where the matching of modes
across the singularity can be treated using a prescription previously
introduced by two of us. Using this approach, we show that long wavelength,
scale-invariant, growing-mode perturbations in the incoming state pass through
the collision and become scale-invariant growing-mode perturbations in the
expanding hot big bang phase.Comment: 47 pages, 4 figure
Competing orders in a magnetic field: spin and charge order in the cuprate superconductors
We describe two-dimensional quantum spin fluctuations in a superconducting
Abrikosov flux lattice induced by a magnetic field applied to a doped Mott
insulator. Complete numerical solutions of a self-consistent large N theory
provide detailed information on the phase diagram and on the spatial structure
of the dynamic spin spectrum. Our results apply to phases with and without
long-range spin density wave order and to the magnetic quantum critical point
separating these phases. We discuss the relationship of our results to a number
of recent neutron scattering measurements on the cuprate superconductors in the
presence of an applied field. We compute the pinning of static charge order by
the vortex cores in the `spin gap' phase where the spin order remains
dynamically fluctuating, and argue that these results apply to recent scanning
tunnelling microscopy (STM) measurements. We show that with a single typical
set of values for the coupling constants, our model describes the field
dependence of the elastic neutron scattering intensities, the absence of
satellite Bragg peaks associated with the vortex lattice in existing neutron
scattering observations, and the spatial extent of charge order in STM
observations. We mention implications of our theory for NMR experiments. We
also present a theoretical discussion of more exotic states that can be built
out of the spin and charge order parameters, including spin nematics and phases
with `exciton fractionalization'.Comment: 36 pages, 33 figures; for a popular introduction, see
http://onsager.physics.yale.edu/superflow.html; (v2) Added reference to new
work of Chen and Ting; (v3) reorganized presentation for improved clarity,
and added new appendix on microscopic origin; (v4) final published version
with minor change
Effect of deformation schedule on the microstructure and mechanical properties of a thermomechanically processed C-Mn-Si transformation-induced plasticity steel
Thermomechanical processing simulations were performed using a hot-torsion machine, in order to develop a comprehensive understanding of the effect of severe deformation in the recrystallized and nonrecrystallized austenite regions on the microstructural evolution and mechanical properties of the 0.2 wt pct C-1.55 wt pct Mn-1.5 wt pct Si transformation-induced plasticity (TRIP) steel. The deformation schedule affected all constituents (polygonal ferrite, bainite in different morphologies, retained austenite, and martensite) of the multiphased TRIP steel microstructure. The complex relationships between the volume fraction of the retained austenite, the morphology and distribution of all phases present in the microstructure, and the mechanical properties of TRIP steel were revealed. The bainite morphology had a more pronounced effect on the mechanical behavior than the refinement of the microstructure. The improvement of the mechanical properties of TRIP steel was achieved by variation of the volume fraction of the retained austenite rather than the overall refinement of the microstructure. <br /
Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation
The current status of electric dipole moments of diamagnetic atoms which
involves the synergy between atomic experiments and three different theoretical
areas -- particle, nuclear and atomic is reviewed. Various models of particle
physics that predict CP violation, which is necessary for the existence of such
electric dipole moments, are presented. These include the standard model of
particle physics and various extensions of it. Effective hadron level combined
charge conjugation (C) and parity (P) symmetry violating interactions are
derived taking into consideration different ways in which a nucleon interacts
with other nucleons as well as with electrons. Nuclear structure calculations
of the CP-odd nuclear Schiff moment are discussed using the shell model and
other theoretical approaches. Results of the calculations of atomic electric
dipole moments due to the interaction of the nuclear Schiff moment with the
electrons and the P and time-reversal (T) symmetry violating
tensor-pseudotensor electron-nucleus are elucidated using different
relativistic many-body theories. The principles of the measurement of the
electric dipole moments of diamagnetic atoms are outlined. Upper limits for the
nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained
combining the results of atomic experiments and relativistic many-body
theories. The coefficients for the different sources of CP violation have been
estimated at the elementary particle level for all the diamagnetic atoms of
current experimental interest and their implications for physics beyond the
standard model is discussed. Possible improvements of the current results of
the measurements as well as quantum chromodynamics, nuclear and atomic
calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for
EPJ
Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment
This paper describes an analysis of the angular distribution of W->enu and
W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with
the ATLAS detector at the LHC in 2010, corresponding to an integrated
luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and
the missing transverse energy, the W decay angular distribution projected onto
the transverse plane is obtained and analysed in terms of helicity fractions
f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV
and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw
> 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour,
are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017
+/- 0.030, where the first uncertainties are statistical, and the second
include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables,
revised author list, matches European Journal of Physics C versio
Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS
The chi_b(nP) quarkonium states are produced in proton-proton collisions at
the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS
detector. Using a data sample corresponding to an integrated luminosity of 4.4
fb^-1, these states are reconstructed through their radiative decays to
Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks
corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new
structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is
also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes.
This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table,
corrected author list, matches final version in Physical Review Letter
- …