1,044 research outputs found

    Health Care System Efficiency Analysis Of G12 Countries

    Get PDF
    Data Envelopment analysis of the health care delivery system of G12 nations is presented here.  Japan and Spain scored the highest and the US, the lowest level of relative efficiencies.  Health care outputs are life expectancy and infant mortality.  Inputs are per capita health care expenditure; population adjusted physicians, hospital beds, and MRI; and a proxy for the level of education.  DEA tests are applied for the 1991-1995 period using both CCR and BCC models.  The paper argues that the lack of universal health care coverage and a single payer system are among the problems that the United States needs to address in order to improve its health care delivery

    Antibiotic Resistance Patterns of Bacterial Isolates from Neonatal Sepsis Patients at University Hospital of Leipzig, Germany

    Get PDF
    Neonatal sepsis caused by resistant bacteria is a worldwide concern due to the associated high mortality and increased hospitals costs. Bacterial pathogens causing neonatal sepsis and their antibiotic resistance patterns vary among hospital settings and at different points in time. This study aimed to determine the antibiotic resistance patterns of pathogens causing neonatal sepsis and to assess trends in antibiotic resistance. The study was conducted among neonates with culture proven sepsis at the University Hospital of Leipzig between November 2012 and September 2020. Blood culture was performed by BacT/ALERT 3D system. Antimicrobial susceptibility testing was done with broth microdilution method based on ISO 20776-1 guideline. Data were analyzed by SPSS version 20 software. From 134 isolates, 99 (74%) were gram positive bacteria. The most common gram positive and gram negative bacteria were S. epidermidis, 51 (38%) and E. coli, 23 (17%), respectively. S. epidermidis showed the highest resistance to penicillin G and roxithromycin (90% each) followed by cefotaxime, cefuroxime, imipenem, oxacillin, and piperacillin-tazobactam (88% each), ampicillin-sulbactam (87%), meropenem (86%), and gentamicin (59%). Moreover, S. epidermidis showed raising levels of resistance to amikacin, gentamicin, ciprofloxacin, levofloxacin, moxifloxacin, and cotrimoxazol. Gram positive bacteria showed less or no resistance to daptomycin, linezolid, teicoplanin, and vancomycin. E. coli showed the highest resistance to ampicillin (74%) followed by ampicillin-sulbactam (52%) and piperacillin (48%). Furthermore, increasing levels in resistance to ampicillin, ampicillin-sulbactam, piperacillin, and cefuroxime were observed over the years. Encouragingly, E. coli showed significantly declining trends of resistance to ciprofloxacin and levofloxacin, and no resistance to amikacin, colistin, fosfomycin, gentamicin, imipenem, piperacillin-tazobactam, and tobramycin. In conclusion, this study demonstrates that gram positive bacteria were the leading causes of neonatal sepsis. Bacterial isolates were highly resistant to first and second-line empiric antibiotics used in this hospital. The high levels of antibiotic resistance patterns highlight the need for modifying empiric treatment regimens considering the most effective antibiotics. Periodic surveillance in hospital settings to monitor changes in pathogens, and antibiotic resistance patterns is crucial in order to implement optimal prevention and treatment strategies

    The Diagnostic Performance of Interleukin-6 and C-Reactive Protein for Early Identification of Neonatal Sepsis

    Get PDF
    Interleukin-6 (IL-6) and C-reactive protein (CRP) are being used for diagnosis of sepsis. However, studies have reported varying cut-off levels and diagnostic performance. This study aims to investigate the optimal cut-off levels and performance of IL-6 and CRP for the diagnosis of neonatal sepsis. The study was conducted at the University Hospital of Leipzig, Germany from November 2012 to June 2020. A total of 899 neonates: 104 culture proven sepsis, 160 clinical sepsis, and 625 controls were included. Blood culture was performed using BacT/ALERT 3D system. IL-6 and CRP were analyzed by electrochemiluminescent immunoassay and immunoturbidimetric assay, respectively. Data were analyzed using SPSS 20 statistical software. Among neonates with proven sepsis, the optimal cut-off value of IL-6 was 313.5 pg/mL. The optimal cut-off values for CRP in 5 days serial measurements (CRP1, CRP2, CRP3, CRP4, and CRP5) were 2.15 mg/L, 8.01 mg/L, 6.80 mg/L, 5.25 mg/L, and 3.72 mg/L, respectively. IL-6 showed 73.1% sensitivity, 80.2% specificity, 37.6% PPV, and 94.8% NPV. The highest performance of CRP was observed in the second day with 89.4% sensitivity, 97.3% specificity, 94.5% PPV, and 98.3% NPV. The combination of IL-6 and CRP showed increase in sensitivity with decrease in specificity. In conclusion, this study defines the optimal cut-off values for IL-6 and CRP. The combination of IL-6 and CRP demonstrated increased sensitivity. The CRP 2 at cut-off 8.01 mg/L showed the highest diagnostic performance for identification of culture negative clinical sepsis cases. We recommend the combination of IL-6 (≥313.5 pg/mL) and CRP1 (≥2.15 mg/L) or IL-6 (≥313.5 pg/mL) and CRP2 (≥8.01 mg/L) for early and accurate diagnosis of neonatal sepsis. The recommendation is based on increased sensitivity, that is, to minimize the risk of any missing cases of sepsis. The CRP2 alone at cut-off 8.01 mg/L might be used to identify clinical sepsis cases among culture negative sepsis suspected neonates in hospital settings

    Refocusing distance of a standard plenoptic camera

    Get PDF
    Recent developments in computational photography enabled variation of the optical focus of a plenoptic camera after image exposure, also known as refocusing. Existing ray models in the field simplify the camera’s complexity for the purpose of image and depth map enhancement, but fail to satisfyingly predict the distance to which a photograph is refocused. By treating a pair of light rays as a system of linear functions, it will be shown in this paper that its solution yields an intersection indicating the distance to a refocused object plane. Experimental work is conducted with different lenses and focus settings while comparing distance estimates with a stack of refocused photographs for which a blur metric has been devised. Quantitative assessments over a 24 m distance range suggest that predictions deviate by less than 0.35 % in comparison to an optical design software. The proposed refocusing estimator assists in predicting object distances just as in the prototyping stage of plenoptic cameras and will be an essential feature in applications demanding high precision in synthetic focus or where depth map recovery is done by analyzing a stack of refocused photographs

    PARP1 catalytic variants reveal branching and chain length-specific functions of poly(ADP-ribose) in cellular physiology and stress response

    Get PDF
    Poly(ADP-ribosyl)ation regulates numerous cellular processes like genome maintenance and cell death, thus providing protective functions but also contributing to several pathological conditions. Poly(ADP-ribose) (PAR) molecules exhibit a remarkable heterogeneity in chain lengths and branching frequencies, but the biological significance of this is basically unknown. To unravel structure-specific functions of PAR, we used PARP1 mutants producing PAR of different qualities, i.e. short and hypobranched (PARP1\G972R), short and moderately hyperbranched (PARP1\Y986S), or strongly hyperbranched PAR (PARP1\Y986H). By reconstituting HeLa PARP1 knockout cells, we demonstrate that PARP1\G972R negatively affects cellular endpoints, such as viability, cell cycle progression and genotoxic stress resistance. In contrast, PARP1\Y986S elicits only mild effects, suggesting that PAR branching compensates for short polymer length. Interestingly, PARP1\Y986H exhibits moderate beneficial effects on cell physiology. Furthermore, different PARP1 mutants have distinct effects on molecular processes, such as gene expression and protein localization dynamics of PARP1 itself, and of its downstream factor XRCC1. Finally, the biological relevance of PAR branching is emphasized by the fact that branching frequencies vary considerably during different phases of the DNA damage-induced PARylation reaction and between different mouse tissues. Taken together, this study reveals that PAR branching and chain length essentially affect cellular functions, which further supports the notion of a ‘PAR code’

    Connections of climate change and variability to large and extreme forest fires in southeast Australia

    Get PDF
    The 2019/20 Black Summer bushfire disaster in southeast Australia was unprecedented: the extensive area of forest burnt, the radiative power of the fires, and the extraordinary number of fires that developed into extreme pyroconvective events were all unmatched in the historical record. Australia’s hottest and driest year on record, 2019, was characterised by exceptionally dry fuel loads that primed the landscape to burn when exposed to dangerous fire weather and ignition. The combination of climate variability and long-term climate trends generated the climate extremes experienced in 2019, and the compounding effects of two or more modes of climate variability in their fire-promoting phases (as occurred in 2019) has historically increased the chances of large forest fires occurring in southeast Australia. Palaeoclimate evidence also demonstrates that fire-promoting phases of tropical Pacific and Indian ocean variability are now unusually frequent compared with natural variability in preindustrial times. Indicators of forest fire danger in southeast Australia have already emerged outside of the range of historical experience, suggesting that projections made more than a decade ago that increases in climate-driven fire risk would be detectable by 2020, have indeed eventuated. The multiple climate change contributors to fire risk in southeast Australia, as well as the observed non-linear escalation of fire extent and intensity, raise the likelihood that fire events may continue to rapidly intensify in the future. Improving local and national adaptation measures while also pursuing ambitious global climate change mitigation efforts would provide the best strategy for limiting further increases in fire risk in southeast Australia

    The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events

    Get PDF
    The design, construction, and commissioning of the ALICE Time-Projection Chamber (TPC) is described. It is the main device for pattern recognition, tracking, and identification of charged particles in the ALICE experiment at the CERN LHC. The TPC is cylindrical in shape with a volume close to 90 m3 and is operated in a 0.5 T solenoidal magnetic field parallel to its axis. In this paper we describe in detail the design considerations for this detector for operation in the extreme multiplicity environment of central Pb–Pb collisions at LHC energy. The implementation of the resulting requirements into hardware (field cage, read-out chambers, electronics), infrastructure (gas and cooling system, laser-calibration system), and software led to many technical innovations which are described along with a presentation of all the major components of the detector, as currently realized. We also report on the performance achieved after completion of the first round of stand-alone calibration runs and demonstrate results close to those specified in the TPC Technical Design Report.publishedVersio

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Forward-central two-particle correlations in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 2GeV/c. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B. V.Peer reviewe
    corecore