17 research outputs found

    Ten years of pulling: Ecosystem recovery after long‐term weed management in Garry oak savanna

    Get PDF
    Ecosystem restoration is the practice of assisting recovery in degraded ecological communities. The aims of restoration are typically broad, involving the reinstatement of composition, structure, function, and resilience to disturbances. One common restoration tactic in degraded urban systems is to control invasive species, relying on passive restoration for further ecosystem‐level recovery. Here, we test whether this is an effective restoration strategy in Garry oak savanna, a highly threatened and ecologically important community in the North American Pacific Northwest. In urban savanna patches surrounding Victoria, British Columbia, community members have been actively removing aggressive invasive exotic species for over a decade. Based on vegetation surveys from 2007, we tested ecosystem changes in structure, composition, and resilience (i.e., functional redundancy and response diversity) across 10 years of varied management levels. We expected higher levels of invasive species management would correspond with improvements to these ecosystem metrics. However, management explained little of the patterns found over the 10‐year‐period. Woody encroachment was a complicated process of native and exotic invasion, while resilience and compositional changes were most closely tied with landscape connectivity. Thus, though invasive species management may prevent further degradation, active restoration strategies after removal are likely required for recovery of the ecosystem

    The MIGDAL experiment: measuring a rare atomic process to aid the search for dark matter

    Get PDF
    We present the Migdal In Galactic Dark mAtter expLoration (MIGDAL) experiment aiming at the unambiguous observation and study of the so-called Migdal effect induced by fast-neutron scattering. It is hoped that this elusive atomic process can be exploited to enhance the reach of direct dark matter search experiments to lower masses, but it is still lacking experimental confirmation. Our goal is to detect the predicted atomic electron emission which is thought to accompany nuclear scattering with low, but calculable, probability, by deploying an Optical Time Projection Chamber filled with a low-pressure gas based on CF4. Initially, pure CF4 will be used, and then in mixtures containing other elements employed by leading dark matter search technologies — including noble species, plus Si and Ge. High resolution track images generated by a Gas Electron Multiplier stack, together with timing information from scintillation and ionisation readout, will be used for 3D reconstruction of the characteristic event topology expected for this process — an arrangement of two tracks sharing a common vertex, with one belonging to a Migdal electron and the other to a nuclear recoil. Different energy-loss rate distributions along both tracks will be used as a powerful discrimination tool against background events. In this article we present the design of the experiment, informed by extensive particle and track simulations and detailed estimations of signal and background rates. In pure CF4 we expect to observe 8.9 (29.3) Migdal events per calendar day of exposure to an intense D–D (D–T) neutron generator beam at the NILE facility located at the Rutherford Appleton Laboratory (UK). With our nominal assumptions, 5σ median discovery significance can be achieved in under one day with either generator

    Measurement of event-shape observables in Z→ℓ+ℓ− events in pp collisions at √ s=7 TeV with the ATLAS detector at the LHC

    Get PDF
    Event-shape observables measured using charged particles in inclusive ZZ-boson events are presented, using the electron and muon decay modes of the ZZ bosons. The measurements are based on an integrated luminosity of 1.1fb11.1 {\rm fb}^{-1} of proton--proton collisions recorded by the ATLAS detector at the LHC at a centre-of-mass energy s=7\sqrt{s}=7 TeV. Charged-particle distributions, excluding the lepton--antilepton pair from the ZZ-boson decay, are measured in different ranges of transverse momentum of the ZZ boson. Distributions include multiplicity, scalar sum of transverse momenta, beam thrust, transverse thrust, spherocity, and F\mathcal{F}-parameter, which are in particular sensitive to properties of the underlying event at small values of the ZZ-boson transverse momentum. The Sherpa event generator shows larger deviations from the measured observables than Pythia8 and Herwig7. Typically, all three Monte Carlo generators provide predictions that are in better agreement with the data at high ZZ-boson transverse momenta than at low ZZ-boson transverse momenta and for the observables that are less sensitive to the number of charged particles in the event.Comment: 36 pages plus author list + cover page (54 pages total), 14 figures, 4 tables, submitted to EPJC, All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2014-0

    Recognition and Delivery of ERAD Substrates to the Proteasome and Alternative Paths for Cell Survival

    No full text

    Recent Research on Warfare in the Old Testament

    No full text
    corecore