Ten years of pulling: Ecosystem recovery after long‐term weed management in Garry oak savanna

Abstract

Ecosystem restoration is the practice of assisting recovery in degraded ecological communities. The aims of restoration are typically broad, involving the reinstatement of composition, structure, function, and resilience to disturbances. One common restoration tactic in degraded urban systems is to control invasive species, relying on passive restoration for further ecosystem‐level recovery. Here, we test whether this is an effective restoration strategy in Garry oak savanna, a highly threatened and ecologically important community in the North American Pacific Northwest. In urban savanna patches surrounding Victoria, British Columbia, community members have been actively removing aggressive invasive exotic species for over a decade. Based on vegetation surveys from 2007, we tested ecosystem changes in structure, composition, and resilience (i.e., functional redundancy and response diversity) across 10 years of varied management levels. We expected higher levels of invasive species management would correspond with improvements to these ecosystem metrics. However, management explained little of the patterns found over the 10‐year‐period. Woody encroachment was a complicated process of native and exotic invasion, while resilience and compositional changes were most closely tied with landscape connectivity. Thus, though invasive species management may prevent further degradation, active restoration strategies after removal are likely required for recovery of the ecosystem

    Similar works