5 research outputs found

    Autophagy regulates inflammation in intracerebral hemorrhage: Enemy or friend?

    Get PDF
    Intracerebral hemorrhage (ICH) is the second-largest stroke subtype and has a high mortality and disability rate. Secondary brain injury (SBI) is delayed after ICH. The main contributors to SBI are inflammation, oxidative stress, and excitotoxicity. Harmful substances from blood and hemolysis, such as hemoglobin, thrombin, and iron, induce SBI. When cells suffer stress, a critical protective mechanism called “autophagy” help to maintain the homeostasis of damaged cells, remove harmful substances or damaged organelles, and recycle them. Autophagy plays a critical role in the pathology of ICH, and its function remains controversial. Several lines of evidence demonstrate a pro-survival role for autophagy in ICH by facilitating the removal of damaged proteins and organelles. However, many studies have found that heme and iron can aggravate SBI by enhancing autophagy. Autophagy and inflammation are essential culprits in the progression of brain injury. It is a fascinating hypothesis that autophagy regulates inflammation in ICH-induced SBI. Autophagy could degrade and clear pro-IL-1β and apoptosis-associated speck-like protein containing a CARD (ASC) to antagonize NLRP3-mediated inflammation. In addition, mitophagy can remove endogenous activators of inflammasomes, such as reactive oxygen species (ROS), inflammatory components, and cytokines, in damaged mitochondria. However, many studies support the idea that autophagy activates microglia and aggravates microglial inflammation via the toll-like receptor 4 (TLR4) pathway. In addition, autophagy can promote ICH-induced SBI through inflammasome-dependent NLRP6-mediated inflammation. Moreover, some resident cells in the brain are involved in autophagy in regulating inflammation after ICH. Some compounds or therapeutic targets that regulate inflammation by autophagy may represent promising candidates for the treatment of ICH-induced SBI. In conclusion, the mutual regulation of autophagy and inflammation in ICH is worth exploring. The control of inflammation by autophagy will hopefully prove to be an essential treatment target for ICH

    Expression and Prognostic Value of Melanoma-Associated Antigen D2 in Gliomas

    No full text
    Introduction: The melanoma-associated antigen D2 (MAGED2) is one of the melanoma-associated antigen family members. It is commonly overexpressed in a variety of malignancies. However, the mechanism and function of MAGED2 in glioma remain unknown. Methods: The MAGED2 expression level and the correlations between clinical characteristics were analyzed with the data from the CGGA and TCGA datasets. MAGED2 expression in 98 glioma tissues was measured using RT-qPCR, Western blot, and immunohistochemistry. CCK-8, colony formation, and EdU assays were used to assess the effect of MAGED2 on U251-MG cell proliferation. Flow cytometry was used to track changes in the cell cycle and cell apoptosis following plasmid transfection with CRISPRi. Results: MAGED2 was shown to be highly expressed in glioma tissues, and high MAGED2 expression predicted poor prognosis. Furthermore, MAGED2 knockdown significantly inhibited the proliferation of U251-MG cells by preventing cell cycle arrest at the G0/G1 phase and triggering apoptosis. In line with in vitro findings, the results of the xenograft experiment and immunohistochemistry also showed that MAGED2 suppression inhibited tumor development and decreased Ki-67 expression levels. Conclusions: MAGED2 may be a possible biomarker for glioma and an important prognostic factor for glioma patients

    The Catalytic, Enantioselective Michael Reaction

    No full text
    corecore