672 research outputs found

    An Evolving Stellar Initial Mass Function and the Gamma-Ray Burst Redshift Distribution

    Full text link
    Recent studies suggest that Swift gamma-ray bursts (GRBs) may not trace an ordinary star formation history. Here we show that the GRB rate turns out to be consistent with the star formation history with an evolving stellar initial mass function (IMF). We first show that the latest Swift sample of GRBs reveals an increasing evolution in the GRB rate relative to the ordinary star formation rate at high redshifts. We then assume only massive stars with masses greater than the critical value to produce GRBs, and use an evolving stellar IMF suggested by Dav\'{e} (2010) to fit the latest GRB redshift distribution. This evolving IMF would increase the relative number of massive stars, which could lead to more GRB explosions at high redshifts. We find that the evolving IMF can well reproduce the observed redshift distribution of Swift GRBs.Comment: 13 pages, 4 figures, accepted for publication in ApJ

    The Physical Properties of the Red Supergiant WOH G64: The Largest Star Known?

    Full text link
    WOH G64 is an unusual red supergiant (RSG) in the Large Magellanic Cloud (LMC), with a number of properties that set it apart from the rest of the LMC RSG population, including a thick circumstellar dust torus, an unusually late spectral type, maser activity, and nebular emission lines. Its reported physical properties are also extreme, including the largest radius for any star known and an effective temperature that is much cooler than other RSGs in the LMC, both of which are at variance with stellar evolutionary theory. We fit moderate-resolution optical spectrophotometry of WOH G64 with the MARCS stellar atmosphere models, determining an effective temperature of 3400 +/- 25 K. We obtain a similar result from the star's broadband V - K colors. With this effective temperature, and taking into account the flux contribution from the aysmmetric circumstellar dust envelope, we calculate log(L/L_sun) = 5.45 +/- 0.05 for WOH G64, quite similar to the luminosity reported by Ohnaka and collaborators based on their radiative transfer modeling of the star's dust torus. We determine a radius of R/R_sun = 1540, bringing the size of WOH G64 and its position on the H-R diagram into agreement with the largest known Galactic RSGs, although it is still extreme for the LMC. In addition, we use the Ca II triplet absorption feature to determine a radial velocity of 294 +/- 2 km/s for the star; this is the same radial velocity as the rotating gas in the LMC's disk, which confirms its membership in the LMC and precludes it from being an unusual Galactic halo giant. Finally, we describe the star's unusual nebula emission spectrum; the gas is nitrogen-rich and shock-heated, and displays a radial velocity that is significantly more positive than the star itself by 50 km/s.Comment: 25 pages, 5 figures; accepted for publication in The Astronomical Journa

    POLLUX : a database of synthetic stellar spectra

    Full text link
    Synthetic spectra are needed to determine fundamental stellar and wind parameters of all types of stars. They are also used for the construction of theoretical spectral libraries helpful for stellar population synthesis. Therefore, a database of theoretical spectra is required to allow rapid and quantitative comparisons to spectroscopic data. We provide such a database offering an unprecedented coverage of the entire Hertzsprung-Russell diagram. We present the POLLUX database of synthetic stellar spectra. For objects with Teff < 6 000 K, MARCS atmosphere models are computed and the program TURBOSPECTRUM provides the synthetic spectra. ATLAS12 models are computed for stars with 7 000 K <Teff <15 000 K. SYNSPEC gives the corresponding spectra. Finally, the code CMFGEN provides atmosphere models for the hottest stars (Teff > 25 000 K). Their spectra are computed with CMF_FLUX. Both high resolution (R>150 000) optical spectra in the range 3 000 to 12 000 A and spectral energy distributions extending from the UV to near--IR ranges are presented. These spectra cover the HR diagram at solar metallicity. We propose a wide variety of synthetic spectra for various types of stars in a format that is compliant with the Virtual Observatory standards. A user--friendly web interface allows an easy selection of spectra and data retrieval. Upcoming developments will include an extension to a large range of metallicities and to the near--IR high resolution spectra, as well as a better coverage of the HR diagram, with the inclusion of models for Wolf-Rayet stars and large datasets for cool stars. The POLLUX database is accessible at http://pollux.graal.univ-montp2.fr/ and through the Virtual Observatory.Comment: 9 pages, 5 figures, accepted for publication in Astronomy ans Astrophysic

    Constraints on Obscured Star Formation in Host Galaxies of Gamma-ray Bursts

    Get PDF
    We present the results of the 16-cm-waveband continuum observations of four host galaxies of gamma-ray bursts (GRBs) 990705, 021211, 041006, and 051022 using the Australia Telescope Compact Array. Radio emission was not detected in any of the host galaxies. The 2sigma upper limits on star-formation rates derived from the radio observations of the host galaxies are 23, 45, 27, and 26 Msun/yr, respectively, which are less than about 10 times those derived from UV/optical observations, suggesting that they have no significant dust-obscured star formation. GRBs 021211 and 051022 are known as the so-called "dark GRBs" and our results imply that dark GRBs do not always occur in galaxies enshrouded by dust. Because large dust extinction was not observed in the afterglow of GRB021211, our result {\bf suggests the possibility} that the cause of the dark GRB is the intrinsic faintness of the optical afterglow. On the other hand, by considering the high column density observed in the afterglow of GRB051022, the likely cause of the dark GRB is the dust extinction in the line of sight of the GRB.Comment: 4 pages, 1 figure, Accepted for publication in Astrophysical Journa

    Connecting the Gamma Ray Burst Rate and the Cosmic Star Formation History: Implications for Reionization and Galaxy Evolution

    Get PDF
    (Abridged) The contemporary discoveries of galaxies and gamma ray bursts (GRBs) at high redshift have supplied the first direct information on star formation when the universe was only a few hundred million years old. The probable origin of long duration GRBs in the deaths of massive stars would link the universal GRB rate to the redshift-dependent star formation rate density, although exactly how is currently unknown. As the most distant GRBs and star-forming galaxies probe the reionization epoch, the potential rewards of understanding the redshift-dependent ratio Psi(z) of the GRB rate to star formation rate are significant and include addressing fundamental questions such as incompleteness in rest-frame UV surveys for determining the star formation rate at high redshift and time variations in the stellar initial mass function. Using an extensive sample of 112 GRBs above a fixed luminosity limit drawn from the Second Swift Burst Alert Telescope catalog, we compare the cumulative redshift distribution N(< z) of GRBs with the star formation density rho_sfr(z) measured from UV-selected galaxies over 0 < z < 4. Strong evolution (e.g., Psi(z) \propto (1+z)^{1.5}) is disfavored, while more modest evolution (e.g., Psi(z) \propto (1+z)^{0.5}) is consistent with the data. If such trends continue beyond z ~ 4, we find the discovery rate of distant GRBs implies a star formation rate density much higher than that inferred from UV-selected galaxies. We show that such a star formation history would over-predict the observed stellar mass density at z > 4 measured from rest-frame optical surveys. The resolution of this important disagreement is currently unclear, and the GRB production rate at early times is likely more complex than a simple function of star formation rate and progenitor metallicity.Comment: Version accepted by Ap

    Star formation in the early universe: beyond the tip of the iceberg

    Get PDF
    We present late-time Hubble Space Telescope imaging of the fields of six Swift GRBs lying at 5.0<z<9.5. Our data includes very deep observations of the field of the most distant spectroscopically confirmed burst, GRB 090423, at z=8.2. Using the precise positions afforded by their afterglows we can place stringent limits on the luminosities of their host galaxies. In one case, that of GRB 060522 at z=5.11, there is a marginal excess of flux close to the GRB position which may be a detection of a host at a magnitude J(AB)=28.5. None of the others are significantly detected meaning that all the hosts lie below L\star at their respective redshifts, with star formation rates SFR<4Mo/yr in all cases. Indeed, stacking the five fields with WFC3-IR data we conclude a mean SFR<0.17Mo/yr per galaxy. These results support the proposition that the bulk of star formation, and hence integrated UV luminosity, at high redshifts arises in galaxies below the detection limits of deep-field observations. Making the reasonable assumption that GRB rate is proportional to UV luminosity at early times allows us to compare our limits with expectations based on galaxy luminosity functions derived from the Hubble Ultra-Deep Field (HUDF) and other deep fields. We infer that a luminosity function which is evolving rapidly towards steeper faint-end slope (alpha) and decreasing characteristic luminosity (L\star), as suggested by some other studies, is consistent with our observations, whereas a non-evolving LF shape is ruled out at >90% confidence. Although it is not yet possible to make stronger statements, in the future, with larger samples and a fuller understanding of the conditions required for GRB production, studies like this hold great potential for probing the nature of star formation, the shape of the galaxy luminosity function, and the supply of ionizing photons in the early universe.Comment: ApJ in press. 14 pages, 6 figures. (small updates from version 1

    Stellar black holes at the dawn of the universe

    Get PDF
    It is well established that between 380000 and 1 billion years after the Big Bang the Inter Galactic Medium (IGM) underwent a "phase transformation" from cold and fully neutral to warm (~10^4 K) and ionized. Whether this phase transformation was fully driven and completed by photoionization by young hot stars is a question of topical interest in cosmology. AIMS. We propose here that besides the ultraviolet radiation from massive stars, feedback from accreting black holes in high-mass X-ray binaries (BH-HMXBs) was an additional, important source of heating and reionization of the IGM in regions of low gas density at large distances from star-forming galaxies. METHODS. We use current theoretical models on the formation and evolution of primitive massive stars of low metallicity, and the observations of compact stellar remnants in the near and distant universe, to infer that a significant fraction of the first generations of massive stars end up as BH-HMXBs. The total number of energetic ionizing photons from an accreting stellar black hole in an HMXB is comparable to the total number of ionizing photons of its progenitor star. However, the X-ray photons emitted by the accreting black hole are capable of producing several secondary ionizations and the ionizing power of the resulting black hole could be greater than that of its progenitor. Feedback by the large populations of BH-HMXBs heats the IGM to temperatures of ~10^4 K and maintains it ionized on large distance scales. BH-HMXBs determine the early thermal history of the universe and mantain it as ionized over large volumes of space in regions of low density. This has a direct impact on the properties of the faintest galaxies at high redshifts, the smallest dwarf galaxies in the local universe, and on the existing and future surveys at radio wavelengths of atomic hydrogen in the early universe.Comment: 7 pages, 2 figures, accepted to be published in Astronomy and Astrophysic

    The Wolf-Rayet features and mass-metallicity relation of long-duration gamma-ray burst host galaxies

    Full text link
    Aims. We have gathered optical spectra of 8 long-duration GRB host galaxies selected from the archival data of VLT/FORS2. We investigated whether or not Wolf-Rayet (WR) stars can be detected in these GRB host galaxies. We also tried to estimate the physical properties of GRB host galaxies, such as metallicity. Methods. We identified the WR features in these spectra by fitting the WR bumps and WR emission lines in blue and red bumps. We also identified the subtypes of the WR stars, and estimated the numbers of stars in each subtype, then calculated the WR/O star ratios. The (O/H) abundances of GRB hosts were estimated from both the electron temperature (Te) and the metallicity-sensitive strong-line ratio (R23), for which we have broken the R23 degeneracy. We compared the environments of long-duration GRB host galaxies with those of other galaxies in terms of their luminosity (stellar mass)-metallicity relations (LZ, MZ). Results. We detected the presence of WR stars in 5 GRB host galaxies having spectra with relatively high signal-to-noise ratios (S/N). In the comparison of LZ, MZ relations, it shows that GRB hosts have lower metallicities than other samples with comparable luminosity and stellar mass. The presence of WR stars and the observed high WR/O star ratio, together with low metallicity, support the core-collapsar model and implie the first stage of star formation in the hosted regions of GRBs.Comment: 12 pages, 4 figures, A&A 514, A24 (2010
    corecore