279 research outputs found

    Recreation Demand Model with Endogenous Trip Duration and Trip Costs

    Get PDF

    Presentation: L‘Europe Sociale: Quel Present? Quel Avenir?

    Get PDF

    An Optimization method for the Configuration of Inter Array Cables for Floating Offshore Wind Farm.

    Get PDF
    International audienceIFP Energies nouvelles (IFPEN) is involved for many years in various projects for the development of floating offshore wind turbines. The commercial deployment of such technologies is planned for 2020. The present paper proposes a methodology for the numerical optimization of the inter array cable configuration. To illustrate the potential of such an optimization, results are presented for a case study with a specific floating foundation concept [1]. The optimization study performed aims to define the least expensive configuration satisfying mechanical constraints under extreme environmental conditions. The parameters to be optimized are the total length, the armoring, the stiffener geometry and the buoyancy modules. The insulated electrical conductors and overall sheath are not concerned by this optimization. The simulations are carried out using DeepLines TM , a Finite Element software dedicated to simulate offshore floating structures in their marine environment. The optimization problem is solved using an IFPEN in-house tool, which integrates a state of the art derivative-free trust region optimization method extended to nonlinear constrained problems. The latter functionality is essential for this type of optimization problem where nonlinear constraints are introduced such as maximum tension, no compression, maximum curvature and elongation, and the aero-hydrodynamic simulation solver does not provide any gradient information. The optimization tool is able to find various local feasible extrema thanks to a multi-start approach, which leads to several solutions of the cable configuration. The sensitivity to the choice of the initial point is demonstrated, illustrating the complexity of the feasible domain and the resulting difficulty in finding the global optimum configuration

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF
    corecore