33 research outputs found

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Global variations in diabetes mellitus based on fasting glucose and haemogloblin A1c

    Get PDF
    Fasting plasma glucose (FPG) and haemoglobin A1c (HbA1c) are both used to diagnose diabetes, but may identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening had elevated FPG, HbA1c, or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardised proportion of diabetes that was previously undiagnosed, and detected in survey screening, ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the agestandardised proportion who had elevated levels of both FPG and HbA1c was 29-39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global gap in diabetes diagnosis and surveillance.peer-reviewe

    Identification of novel long noncoding RNAs underlying vertebrate cardiovascular development

    No full text
    International audienceBACKGROUND: Long noncoding RNAs (lncRNAs) have emerged as critical epigenetic regulators with important functions in development and disease. Here, we sought to identify and functionally characterize novel lncRNAs critical for vertebrate development. METHODS AND RESULTS: By relying on human pluripotent stem cell differentiation models, we investigated lncRNAs differentially regulated at key steps during human cardiovascular development with a special focus on vascular endothelial cells. RNA sequencing led to the generation of large data sets that serve as a gene expression roadmap highlighting gene expression changes during human pluripotent cell differentiation. Stage-specific analyses led to the identification of 3 previously uncharacterized lncRNAs, TERMINATOR, ALIEN, and PUNISHER, specifically expressed in undifferentiated pluripotent stem cells, cardiovascular progenitors, and differentiated endothelial cells, respectively. Functional characterization, including localization studies, dynamic expression analyses, epigenetic modification monitoring, and knockdown experiments in lower vertebrates, as well as murine embryos and human cells, confirmed a critical role for each lncRNA specific for each analyzed developmental stage. CONCLUSIONS: We have identified and functionally characterized 3 novel lncRNAs involved in vertebrate and human cardiovascular development, and we provide a comprehensive transcriptomic roadmap that sheds new light on the molecular mechanisms underlying human embryonic development, mesodermal commitment, and cardiovascular specification

    Visual Detection of High-Risk Human Papillomavirus Genotypes 16, 18, 45, 52, and 58 by Loop-Mediated Isothermal Amplification with Hydroxynaphthol Blue Dye▿

    No full text
    A simple, rapid, sensitive, qualitative, colorimetric loop-mediated isothermal amplification (LAMP) with hydroxynaphthol blue dye (HNB) was established to detect high-risk human papillomavirus (HPV) genotypes 16, 18, 45, 52, and 58. All initial validation studies with the control DNA proved to be type specific. The colorimetric type-specific LAMP assay could achieve a sensitivity of 10 to 100 copies at 63°C for 65 min, comparable to that of real-time PCR. In order to evaluate the reliability of HPV type-specific LAMP, the assay was further evaluated with HPV DNAs from a panel of 294 clinical specimens whose HPV status was previously determined with a novel one-step typing method with multiplex PCR. The tested panel comprised 108 HPV DNA-negative samples and 186 HPV-DNA-positive samples of 14 genotypes. The results showed that the sensitivity of HPV type-specific LAMP for HPV types 16, 18, 45, 52, and 58 was 100%, 100%, 100%, 100%, and 100%, respectively, and the specificity was 100%, 98.5%, 100%, 98.8%, and 99.2%, respectively, compared with a novel one-step typing method with multiplex PCR. No cross-reactivity with other HPV genotypes was observed. In conclusion, this qualitative and colorimetric LAMP assay has potential usefulness for the rapid screening of HPV genotype 16, 18, 45, 52, and 58 infections, especially in resource-limited hospitals or rural clinics of provincial and municipal regions in China
    corecore