34 research outputs found

    Plant lectins: the ties that bind in root symbiosis and plant defense

    Get PDF
    Lectins are a diverse group of carbohydrate-binding proteins that are found within and associated with organisms from all kingdoms of life. Several different classes of plant lectins serve a diverse array of functions. The most prominent of these include participation in plant defense against predators and pathogens and involvement in symbiotic interactions between host plants and symbiotic microbes, including mycorrhizal fungi and nitrogen-fixing rhizobia. Extensive biological, biochemical, and molecular studies have shed light on the functions of plant lectins, and a plethora of uncharacterized lectin genes are being revealed at the genomic scale, suggesting unexplored and novel diversity in plant lectin structure and function. Integration of the results from these different types of research is beginning to yield a more detailed understanding of the function of lectins in symbiosis, defense, and plant biology in general

    Combinations of single-top-quark production cross-section measurements and vertical bar f(LV)V(tb)vertical bar determinations at root s=7 and 8 TeV with the ATLAS and CMS experiments

    Get PDF
    This paper presents the combinations of single-top-quark production cross-section measurements by the ATLAS and CMS Collaborations, using data from LHC proton-proton collisions at = 7 and 8 TeV corresponding to integrated luminosities of 1.17 to 5.1 fb(-1) at = 7 TeV and 12.2 to 20.3 fb(-1) at = 8 TeV. These combinations are performed per centre-of-mass energy and for each production mode: t-channel, tW, and s-channel. The combined t-channel cross-sections are 67.5 +/- 5.7 pb and 87.7 +/- 5.8 pb at = 7 and 8 TeV respectively. The combined tW cross-sections are 16.3 +/- 4.1 pb and 23.1 +/- 3.6 pb at = 7 and 8 TeV respectively. For the s-channel cross-section, the combination yields 4.9 +/- 1.4 pb at = 8 TeV. The square of the magnitude of the CKM matrix element V-tb multiplied by a form factor f(LV) is determined for each production mode and centre-of-mass energy, using the ratio of the measured cross-section to its theoretical prediction. It is assumed that the top-quark-related CKM matrix elements obey the relation |V-td|, |V-ts| << |V-tb|. All the |f(LV)V(tb)|(2) determinations, extracted from individual ratios at = 7 and 8 TeV, are combined, resulting in |f(LV)V(tb)| = 1.02 +/- 0.04 (meas.) +/- 0.02 (theo.). All combined measurements are consistent with their corresponding Standard Model predictions.Peer reviewe

    Paradoxical inhibitory effect of serotonin on cortisol production from adrenocortical lesions causing Cushing's syndrome.

    No full text
    International audienceIn the human adrenal gland, serotonin (5-HT) stimulates cortisol production through a paracrine mechanism involving 5-HT4 receptors positively-coupled to adenylyl cyclase. A hyperresponsiveness of adrenocortical tissue to 5-HT has also been described in several cases of ACTH-independent bilateral macronodular adrenal hyperplasias (AIMAHs) and adenomas causing Cushing's syndrome. In the present study, we report two cases of cortisol-producing adrenocortical lesions, i.e., one AIMAH (case 1) and one adenoma (case 2), whose secretory activity was inhibited in vitro by 5-HT. The potencies (pIC50) and efficacies (Emax) of 5-HT to inhibit cortisol secretion were 8.2 +/- 0.4 and -64.1% +/- 7.5% in case 1, and 9.2 +/- 0.5 and -32.3% +/- 3.8% in case 2. The specific 5-HT4 antagonist GR 113808 failed to influence the 5-HT-induced decrease in cortisol production by the two tissues, indicating that the paradoxical inhibitory effect of 5-HT could not be accounted for by activation of eutopic 5-HT4 receptors. These results suggest that the tissues expressed aberrant 5-HT receptors. In conclusion, the present study provides the first evidence for an inhibitory effect of 5-HT on cortisol secretion in adrenocortical lesions causing Cushing's syndrome. Our data also suggest that expression of illegitimate membrane receptors by cortisol-producing adrenal hyperplasias and/or adenomas may convert a paracrine stimulatory factor into an inhibitory signal

    Paradoxical inhibitory effect of serotonin on cortisol production from adrenocortical lesions causing Cushing's syndrome.

    No full text
    International audienceIn the human adrenal gland, serotonin (5-HT) stimulates cortisol production through a paracrine mechanism involving 5-HT4 receptors positively-coupled to adenylyl cyclase. A hyperresponsiveness of adrenocortical tissue to 5-HT has also been described in several cases of ACTH-independent bilateral macronodular adrenal hyperplasias (AIMAHs) and adenomas causing Cushing's syndrome. In the present study, we report two cases of cortisol-producing adrenocortical lesions, i.e., one AIMAH (case 1) and one adenoma (case 2), whose secretory activity was inhibited in vitro by 5-HT. The potencies (pIC50) and efficacies (Emax) of 5-HT to inhibit cortisol secretion were 8.2 +/- 0.4 and -64.1% +/- 7.5% in case 1, and 9.2 +/- 0.5 and -32.3% +/- 3.8% in case 2. The specific 5-HT4 antagonist GR 113808 failed to influence the 5-HT-induced decrease in cortisol production by the two tissues, indicating that the paradoxical inhibitory effect of 5-HT could not be accounted for by activation of eutopic 5-HT4 receptors. These results suggest that the tissues expressed aberrant 5-HT receptors. In conclusion, the present study provides the first evidence for an inhibitory effect of 5-HT on cortisol secretion in adrenocortical lesions causing Cushing's syndrome. Our data also suggest that expression of illegitimate membrane receptors by cortisol-producing adrenal hyperplasias and/or adenomas may convert a paracrine stimulatory factor into an inhibitory signal

    Le 26RFA exerce une activité de type incrétine

    No full text
    International audienceRésuméObjectifLe neuropeptide 26RFa exerce une activité orexigène via l’activation de son récepteur le GPR103 présent sur les neurones hypothalamiques à NPY. Nous avons déjà rapporté une augmentation des concentrations plasmatiques du peptide chez les patients obèses et diabétiques. L’objectif du travail est de déterminer l’origine du 26RFa plasmatique et son implication dans la régulation glycémique.Matériel et méthodesLe 26RFA exerce une activité de type incrétine Un immunomarquage sur différents segments du tractus digestif humain et murin a été réalisé avec un anticorps dirigé contre le 26RFa et le GPR103. Les concentrations plasmatiques du 26RFa ont été déterminées (dosage RIA) chez la souris après charge orale ou IV de glucose. La sécrétion intestinale du 26RFA lors d’une exposition au glucose a été évaluée in vitro à partir de segments de tractus digestifs murins montés en chambre de Ussing. Enfin, l’effet du 26RFA sur la sécrétion d’insuline a été évalué chez la souris et sur une lignée de cellules MIN6.RésultatsL’ensemble du tractus digestif humain et murin exprime le 26RFA et son récepteur. Chez la souris, les concentrations plasmatiques de 26RFA, stables lors de la charge IV de glucose, sont significativement augmentées 30minutes après la charge orale. Parallèlement in vitro, le glucose induit une libération significative de 26RFa par l’intestin proximal. Enfin, le 26RFA augmente la sécrétion d’insuline chez la souris et sur les cellules MIN6.ConclusionL’ensemble de ces données suggère pour la première fois que le 26RFA est impliqué dans la régulation glycémique via une activité de type incrétine

    Does somatostatin have a role in the regulation of cortisol secretion in primary pigmented nodular adrenocortical disease (PPNAD)? A clinical and in vitro investigation

    No full text
    Context: Somatostatin (SST) receptors (SSTRs) are expressed in a number of tissues, including the adrenal cortex, but their role in cortisol secretion has not been well characterized. Objectives: The objective of the study was to investigate the expression of SSTRs in the adrenal cortex and cultured adrenocortical cells from primary pigmented nodular adrenocortical disease (PPNAD) tissues and to test the effect of a single injection of 100 g of the SST analog octreotide on cortisol secretion in patients with PPNAD. Setting and Design: The study was conducted at an academic research laboratory and clinical research center. Expression of SSTRs was examined in 26 PPNAD tissues and the immortalized PPNAD cell line CAR47. Ten subjects with PPNAD underwent a randomized, single-blind, crossover study of their cortisol secretion every 30 minutes over 12 hours (6:00 PM to 6:00 AM) before and after the midnight administration of octreotide 100 μg sc. Methods: SSTRs expression was investigated by quantitative PCR and immunohistochemistry. The CAR47and primary cell lines were studied in vitro. The data of the 10 patients were analyzed before and after the administration of octreotide. Results: All SSTRs, especially SSTR1-3, were expressed in PPNAD at significantly higher levels than in normal adrenal. SST was found to differentially regulate expression of its own receptors in the CAR47 cell line. However, the administration of octreotide to patients with PPNAD did not significantly affect cortisol secretion. Conclusions: SSTRs are overexpressed in PPNAD tissues in comparison with normal adrenal cortex. Octreotide did not exert any significant effect on cortisol secretion in a short clinical pilot study in a small number of patients with PPNAD, but long-acting SST analogs targeting multiple SSTRs may be worth investigating in this condition
    corecore