1,671 research outputs found

    The Kinase PDK1 Is Essential for B-Cell Receptor Mediated Survival Signaling

    Get PDF
    Phosphoinositide-dependent kinase 1 (PDK1) plays an important role in integrating the T cell antigen receptor (TCR) and CD28 signals to achieve efficient NF-ÎșB activation. PDK1 is also an important regulator of T cell development, mediating pre-TCR induced proliferation signals. However, the role of PDK1 in B cell antigen receptor (BCR) signaling and B cell development remains largely unknown. In this study we provide genetic evidence supporting the role of PDK1 in B cell survival. We found PDK1 is required for BCR mediated survival in resting B cells, likely through regulation of Foxo activation. PDK1-dependent signaling to NF-ÎșB is not crucial to resting B cell viability. However, PDK1 is necessary for triggering NF-ÎșB during B cell activation and is required for activated B cell survival. Together these studies demonstrate that PDK1 is essential for BCR-induced signal transduction to Foxo and NF-ÎșB and is indispensable for both resting and activated B cell survival

    Distinct patterns of Internet and smartphone-related problems among adolescents by gender: Latent class analysis

    Get PDF
    Background and objectives The ubiquitous Internet connections by smartphones weakened the traditional boundaries between computers and mobile phones. We sought to explore whether smartphone-related problems differ from those of computer use according to gender using latent class analysis (LCA). Methods After informed consents, 555 Korean middle-school students completed surveys on gaming, Internet use, and smartphone usage patterns. They also completed various psychosocial instruments. LCA was performed for the whole group and by gender. In addition to ANOVA and χ2 tests, post-hoc tests were conducted to examine differences among the LCA subgroups. Results In the whole group (n = 555), four subtypes were identified: dual-problem users (49.5%), problematic Internet users (7.7%), problematic smartphone users (32.1%), and “healthy” users (10.6%). Dual-problem users scored highest for addictive behaviors and other psychopathologies. The gender-stratified LCA revealed three subtypes for each gender. With dual-problem and healthy subgroup as common, problematic Internet subgroup was classified in the males, whereas problematic smartphone subgroup was classified in the females in the gender-stratified LCA. Thus, distinct patterns were observed according to gender with higher proportion of dual-problem present in males. While gaming was associated with problematic Internet use in males, aggression and impulsivity demonstrated associations with problematic smartphone use in females. Conclusions An increase in the number of digital media-related problems was associated with worse outcomes in various psychosocial scales. Gaming may play a crucial role in males solely displaying Internet-related problems. The heightened impulsivity and aggression seen in our female problematic smartphone users requires further research

    Dynamically generated 0^+ heavy mesons in a heavy chiral unitary approach

    Get PDF
    In terms of the heavy chiral Lagrangian and the unitarized coupled-channel scattering amplitude, interaction between the heavy meson and the light pseudoscalar meson is studied. By looking for the pole of scattering matrix on an appropriate Riemann sheet, a DKDK bound state Ds0∗D_{s0}^* with the mass of 2.312±0.0412.312\pm0.041 GeV is found. This state can be associated as the narrow DsJ∗(2317)D_{sJ}^*(2317) state found recently. In the same way, a BKˉB{\bar K} bound state Bs0∗B_{s0}^* is found, and its mass of 5.725±0.0395.725\pm0.039 GeV is predicted. The spectra of D0∗D_0^* and B0∗B_0^* with I=1/2I=1/2 are further investigated. One broad and one narrow states are predicted in both charm and bottom sectors. The coupling constants and decay widths of the predicted states are also calculated.Comment: 15 pages, 1 figure. One numerical error in Eq.16 correcte

    Myeloid-Derived Suppressor Cells Are Controlled by Regulatory T Cells via TGF-ÎČ during Murine Colitis

    Get PDF
    Myeloid-derived suppressor cells (MDSCs) are well known regulators of regulatory T cells (Treg cells); however, the direct regulation of MDSCs by Treg cells has not been well characterized. We find that colitis caused by functional deficiency of Treg cells leads to altered expansion and reduced function of MDSCs. During differentiation of MDSCs in vitro from bone marrow cells, Treg cells enhanced MDSC function and controlled their differentiation through a mechanism involving transforming growth factor-ÎČ (TGF-ÎČ). TGF-ÎČ-deficient Treg cells were not able to regulate MDSC function in an experimentally induced model of colitis. Finally, we evaluated the therapeutic effect of TGF-ÎČ-mediated in-vitro-differentiated MDSCs on colitis. Adoptive transfer of MDSCs that differentiated with TGF-ÎČ led to better colitis prevention than the transfer of MDSCs that differentiated without TGF-ÎČ. Our results demonstrate an interaction between Treg cells and MDSCs that contributes to the regulation of MDSC proliferation and the acquisition of immunosuppressive functions

    Singularities in Horava-Lifshitz theory

    Full text link
    Singularities in (3+1)(3+1)-dimensional Horava-Lifshitz (HL) theory of gravity are studied. These singularities can be divided into scalar, non-scalar curvature, and coordinate singularities. Because of the foliation-preserving diffeomorphisms of the theory, the number of scalars that can be constructed from the extrinsic curvature tensor KijK_{ij}, the 3-dimensional Riemann tensor and their derivatives is much large than that constructed from the 4-dimesnional Riemann tensor and its derivatives in general relativity (GR). As a result, even for the same spacetime, it may be singular in the HL theory but not in GR. Two representative families of solutions with projectability condition are studied, one is the (anti-) de Sitter Schwarzschild solutions, and the other is the Lu-Mei-Pope (LMP) solutions written in a form satisfying the projectability condition - the generalized LMP solutions. The (anti-) de Sitter Schwarzschild solutions are vacuum solutions of both HL theory and GR, while the LMP solutions with projectability condition satisfy the HL equations coupled with an anisotropic fluid with heat flow. It is found that the scalars KK and KijKijK_{ij}K^{ij} are singular only at the center for the de Sitter Schwarzschild solution, but singular at both the center and r=(3M/∣Λ∣)1/3 r = (3M/|\Lambda|)^{1/3} for the anti-de Sitter Schwarzschild solution. The singularity at r=(3M/∣Λ∣)1/3 r = (3M/|\Lambda|)^{1/3} is absent in GR. In addition, all the generalized LMP solutions have two scalar curvature singularities, located at either r=0r = 0 and r=rs>0r=r_{s} > 0, or r=r1r=r_{1} and r=r2r= r_{2} with r2>r1>0r_{2} > r_{1} > 0, or r=rs>0r=r_{s} > 0 and r=∞r = \infty, depending on the choice of the free parameter λ\lambda.Comment: Revtex4, six figures. Version to appear in Phys. Lett.

    A Phenome-Based Functional Analysis of Transcription Factors in the Cereal Head Blight Fungus, Fusarium graminearum

    Get PDF
    Fusarium graminearum is an important plant pathogen that causes head blight of major cereal crops. The fungus produces mycotoxins that are harmful to animal and human. In this study, a systematic analysis of 17 phenotypes of the mutants in 657 Fusarium graminearum genes encoding putative transcription factors (TFs) resulted in a database of over 11,000 phenotypes (phenome). This database provides comprehensive insights into how this cereal pathogen of global significance regulates traits important for growth, development, stress response, pathogenesis, and toxin production and how transcriptional regulations of these traits are interconnected. In-depth analysis of TFs involved in sexual development revealed that mutations causing defects in perithecia development frequently affect multiple other phenotypes, and the TFs associated with sexual development tend to be highly conserved in the fungal kingdom. Besides providing many new insights into understanding the function of F. graminearum TFs, this mutant library and phenome will be a valuable resource for characterizing the gene expression network in this fungus and serve as a reference for studying how different fungi have evolved to control various cellular processes at the transcriptional level

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Polyploidization Altered Gene Functions in Cotton (Gossypium spp.)

    Get PDF
    Cotton (Gossypium spp.) is an important crop plant that is widely grown to produce both natural textile fibers and cottonseed oil. Cotton fibers, the economically more important product of the cotton plant, are seed trichomes derived from individual cells of the epidermal layer of the seed coat. It has been known for a long time that large numbers of genes determine the development of cotton fiber, and more recently it has been determined that these genes are distributed across At and Dt subgenomes of tetraploid AD cottons. In the present study, the organization and evolution of the fiber development genes were investigated through the construction of an integrated genetic and physical map of fiber development genes whose functions have been verified and confirmed. A total of 535 cotton fiber development genes, including 103 fiber transcription factors, 259 fiber development genes, and 173 SSR-contained fiber ESTs, were analyzed at the subgenome level. A total of 499 fiber related contigs were selected and assembled. Together these contigs covered about 151 Mb in physical length, or about 6.7% of the tetraploid cotton genome. Among the 499 contigs, 397 were anchored onto individual chromosomes. Results from our studies on the distribution patterns of the fiber development genes and transcription factors between the At and Dt subgenomes showed that more transcription factors were from Dt subgenome than At, whereas more fiber development genes were from At subgenome than Dt. Combining our mapping results with previous reports that more fiber QTLs were mapped in Dt subgenome than At subgenome, the results suggested a new functional hypothesis for tetraploid cotton. After the merging of the two diploid Gossypium genomes, the At subgenome has provided most of the genes for fiber development, because it continues to function similar to its fiber producing diploid A genome ancestor. On the other hand, the Dt subgenome, with its non-fiber producing D genome ancestor, provides more transcription factors that regulate the expression of the fiber genes in the At subgenome. This hypothesis would explain previously published mapping results. At the same time, this integrated map of fiber development genes would provide a framework to clone individual full-length fiber genes, to elucidate the physiological mechanisms of the fiber differentiation, elongation, and maturation, and to systematically study the functional network of these genes that interact during the process of fiber development in the tetraploid cottons
    • 

    corecore