45 research outputs found

    1+1 Dimensional Hydrodynamics for High-energy Heavy-ion Collisions

    Get PDF
    A 1+1 dimensional hydrodynamical model in the light-cone coordinates is used to describe central heavy-ion collisions at ultrarelativistic bombarding energies. Deviations from Bjorken's scaling are taken into account by choosing finite-size profiles for the initial energy density. The sensitivity of fluid dynamical evolution to the equation of state and the parameters of initial state is investigated. Experimental constraints on the total energy of produced particles are used to reduce the number of model parameters. Spectra of secondary particles are calculated assuming that the transition from the hydrodynamical stage to the collisionless expansion of matter occurs at a certain freeze-out temperature. An important role of resonances in the formation of observed hadronic spectra is demonstrated. The calculated rapidity distributions of pions, kaons and antiprotons in central Au+Au collisions at the c.m. energy 200 GeV per NN pair are compared with experimental data of the BRAHMS Collaboration. Parameters of the initial state are reconstructed for different choices of the equation of state. The best fit of these data is obtained for a soft equation of state and Gaussian-like initial profiles of the energy density, intermediate between the Landau and Bjorken limits.Comment: 43 pages, 27 figure

    Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer

    Get PDF
    Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95±5% and have potential to serve as the basis of spin-logic and network implementations

    Mass and Isospin Effects in Multifragmentation

    Get PDF
    A systematic study of isospin effects in the breakup of projectile spectators at relativistic energies has been performed with the ALADiN spectrometer at the GSI laboratory (Darmstadt). Four different projectiles 197Au, 124La, 124Sn and 107Sn, all with an incident energy of 600 AMeV, have been used, thus allowing a study of various combinations of masses and N/Z ratios in the entrance channel. The measurement of the momentum vector and of the charge of all projectile fragments with Z>1 entering the acceptance of the ALADiN magnet has been performed with the high efficiency and resolution achieved with the TP-MUSIC IV detector. The Rise and Fall behavior of the mean multiplicity of IMFs as a function of Zbound and its dependence on the isotopic composition has been determined for the studied systems. Other observables investigated so far include mean N/Z values of the emitted light fragments and neutron multiplicities. Qualitative agreement has been obtained between the observed gross properties and the predictions of the Statistical Multifragmentation Model.Comment: 10 pages,7 figure, 18th Nuclear Physics Division Conference of the EPS, Prague, submitted to Nucl. Phys.

    Statistical Multifragmentation of Non-Spherical Expanding Sources in Central Heavy-Ion Collisions

    Full text link
    We study the anisotropy effects measured with INDRA at GSI in central collisions of Xe+Sn at 50 A.MeV and Au+Au at 60, 80, 100 A.MeV incident energy. The microcanonical multifragmentation model with non-spherical sources is used to simulate an incomplete shape relaxation of the multifragmenting system. This model is employed to interpret observed anisotropic distributions in the fragment size and mean kinetic energy. The data can be well reproduced if an expanding prolate source aligned along the beam direction is assumed. An either non-Hubblean or non-isotropic radial expansion is required to describe the fragment kinetic energies and their anisotropy. The qualitative similarity of the results for the studied reactions suggests that the concept of a longitudinally elongated freeze-out configuration is generally applicable for central collisions of heavy systems. The deformation decreases slightly with increasing beam energy.Comment: 35 pages, 19 figures, submitted to Nuclear Physics

    Microscopic model approaches to fragmentation of nuclei and phase transitions in nuclear matter

    Get PDF
    The properties of excited nuclear matter and the quest for a phase transition which is expected to exist in this system are the subject of intensive investigations. High energy nuclear collisions between finite nuclei which lead to matter fragmentation are used to investigate these properties. The present report covers effective work done on the subject over the two last decades. The analysis of experimental data is confronted with two major problems, the setting up of thermodynamic equilibrium in a time-dependent fragmentation process and the finite size of nuclei. The present status concerning the first point is presented. Simple classical models of disordered systems are derived starting with the generic bond percolation approach. These lattice and cellular equilibrium models, like percolation approaches, describe successfully experimental fragment multiplicity distributions. They also show the properties of systems which undergo a thermodynamic phase transition. Physical observables which are devised to show the existence and to fix the order of critical behaviour are presented. Applications to the models are shown. Thermodynamic properties of finite systems undergoing critical behaviour are advantageously described in the framework of the microcanonical ensemble. Applications to the designed models and to experimental data are presented and analysed. Perspectives of further developments of the field are suggested.Comment: 150 pages including 28 figures. To be published in Phys. Rep. Corrected discussion in section 3.2.3 and new Fig.5. New caption of Fig.2

    Effects of a multi-strain probiotic supplement for 12 weeks in circulating endotoxin levels and cardiometabolic profiles of medication naïve T2DM patients: a randomized clinical trial

    Get PDF
    Background: The present randomized clinical trial characterized the beneficial effects of a multi-strain probiotics supplementation on improving circulating endotoxin levels (primary endpoint) and other cardiometabolic biomarkers (secondary endpoint) in patients with T2DM. Methods: A total of 78 adult Saudi T2DM patients (naïve and without co-morbidities) participated in this clinical trial and were randomized to receive twice daily placebo or probiotics [(2.5 × 109 cfu/g) containing the following bacterial strains: Bifidobacterium bifidum W23, Bifidobacterium lactis W52, Lactobacillus acidophilus W37, Lactobacillus brevis W63, Lactobacillus casei W56, Lactobacillus salivarius W24, Lactococcus lactis W19 and Lactococcus lactis W58 (Ecologic®Barrier)] in a double-blind manner for 12 weeks. Anthropometrics and cardiometabolic profiles were obtained at baseline and after 12/13 weeks of treatment. Results: After 12/13 weeks of intervention and using intention-to-treat analysis, no difference was noted in endotoxin levels between groups [Placebo − 9.5% vs. Probiotics − 52.2%; (CI − 0.05 to 0.36; p = 0.15)]. Compared with the placebo group however, participants in the probiotics groups had a significant but modest improvement in WHR [Placebo 0.0% vs. Probiotics 1.11%; (CI − 0.12 to − 0.01; p = 0.02)] as well as a clinically significant improvement in HOMA-IR [Placebo − 12.2% vs. Probiotics − 60.4%; (CI − 0.34 to − 0.01; p = 0.04)]. Conclusion: Using a multi-strain probiotic supplement daily for 12/13 weeks significantly improved HOMA-IR and modestly reduced abdominal adiposity among medication naïve T2DM patients

    Immune Evasion by Yersinia enterocolitica: Differential Targeting of Dendritic Cell Subpopulations In Vivo

    Get PDF
    CD4+ T cells are essential for the control of Yersinia enterocolitica (Ye) infection in mice. Ye can inhibit dendritic cell (DC) antigen uptake and degradation, maturation and subsequently T-cell activation in vitro. Here we investigated the effects of Ye infection on splenic DCs and T-cell proliferation in an experimental mouse infection model. We found that OVA-specific CD4+ T cells had a reduced potential to proliferate when stimulated with OVA after infection with Ye compared to control mice. Additionally, proliferation of OVA-specific CD4+ T cells was markedly reduced when cultured with splenic CD8α+ DCs from Ye infected mice in the presence of OVA. In contrast, T-cell proliferation was not impaired in cultures with CD4+ or CD4−CD8α− DCs isolated from Ye infected mice. However, OVA uptake and degradation as well as cytokine production were impaired in CD8α+ DCs, but not in CD4+ and CD4−CD8α− DCs after Ye infection. Pathogenicity factors (Yops) from Ye were most frequently injected into CD8α+ DCs, resulting in less MHC class II and CD86 expression than on non-injected CD8α+ DCs. Three days post infection with Ye the number of splenic CD8α+ and CD4+ DCs was reduced by 50% and 90%, respectively. The decreased number of DC subsets, which was dependent on TLR4 and TRIF signaling, was the result of a faster proliferation and suppressed de novo DC generation. Together, we show that Ye infection negatively regulates the stimulatory capacity of some but not all splenic DC subpopulations in vivo. This leads to differential antigen uptake and degradation, cytokine production, cell loss, and cell death rates in various DC subpopulations. The data suggest that these effects might be caused directly by injection of Yops into DCs and indirectly by affecting the homeostasis of CD4+ and CD8α+ DCs. These events may contribute to reduced T-cell proliferation and immune evasion of Ye

    aHUS caused by complement dysregulation: new therapies on the horizon

    Get PDF
    Atypical hemolytic uremic syndrome (aHUS) is a heterogeneous disease that is caused by defective complement regulation in over 50% of cases. Mutations have been identified in genes encoding both complement regulators [complement factor H (CFH), complement factor I (CFI), complement factor H-related proteins (CFHR), and membrane cofactor protein (MCP)], as well as complement activators [complement factor B (CFB) and C3]. More recently, mutations have also been identified in thrombomodulin (THBD), an anticoagulant glycoprotein that plays a role in the inactivation of C3a and C5a. Inhibitory autoantibodies to CFH account for an additional 5–10% of cases and can occur in isolation or in association with mutations in CFH, CFI, CFHR 1, 3, 4, and MCP. Plasma therapies are considered the mainstay of therapy in aHUS secondary to defective complement regulation and may be administered as plasma infusions or plasma exchange. However, in certain cases, despite initiation of plasma therapy, renal function continues to deteriorate with progression to end-stage renal disease and renal transplantation. Recently, eculizumab, a humanized monoclonal antibody against C5, has been described as an effective therapeutic strategy in the management of refractory aHUS that has failed to respond to plasma therapy. Clinical trials are now underway to further evaluate the efficacy of eculizumab in the management of both plasma-sensitive and plasma-resistant aHUS
    corecore