283 research outputs found

    The magnetic reorientation transition in thin ferromagnetic films treated by many-body Green's function theory

    Full text link
    This contribution describes the reorientation of the magnetization of thin ferromagnetic Heisenberg films as function of the temperature and/or an external field. Working in a rotating frame allows an exact treatment of the single-ion anisotropy when going to higher-order Green's functions. Terms due to the exchange interaction are treated by a generalized Tyablikov (RPA) decoupling.Comment: 9 pages, 2 figure

    Single-ion versus exchange anisotropy in calculating anisotropic susceptibilities of thin ferromagnetic Heisenberg films within many-body Green's function theory

    Full text link
    We compare transverse and parallel static susceptibilities of in-plane uniaxial anisotropic ferromagnetic Heisenberg films calculated in the framework of many-body Green's function theory using single-ion anisotropies with the previously investigated case of exchange anisotropies. On the basis of the calculated observables (easy and hard axes magnetizations and susceptibilities) no significant differences are found, i. e. it is not possible to propose an experiment that might decide which kind of anisotropy is acting in an actual ferromagnetic film.Comment: 16 pages, 8 figure

    The spectral theorem of many-body Green's function theory when there are zero eigenvalues of the matrix governing the equations of motion

    Full text link
    In using the spectral theorem of many-body Green's function theory in order to relate correlations to commutator Green's functions, it is necessary in the standard procedure to consider the anti-commutator Green's functions as well whenever the matrix governing the equations of motion for the commutator Green's functions has zero eigenvalues. We show that a singular-value decomposition of this matrix allows one to reformulate the problem in terms of a smaller set of Green's functions with an associated matrix having no zero eigenvalues, thus eliminating the need for the anti-commutator Green's functions. The procedure is quite general and easy to apply. It is illustrated for the field-induced reorientation of the magnetization of a ferromagnetic Heisenberg monolayer and it is expected to work for more complicated cases as well.Comment: 4 pages, 1 figure, accepted for publication in Physical Review B (16. May 2003

    The treatment of zero eigenvalues of the matrix governing the equations of motion in many-body Green's function theory

    Full text link
    The spectral theorem of many-body Green's function theory relates thermodynamic correlations to Green's functions. More often than not, the matrix governing the equations of motion has zero eigenvalues. In this case, the standard text-book approach requires both commutator and anti-commutator Green's functions to obtain equations for that part of the correlation which does not lie in the null space of the matrix. In this paper, we show that this procedure fails if the projector onto the null space is dependent on the momentum vector. We propose an alternative formulation of the theory in terms of the non-null space alone and we show that a solution is possible if one can find a momentum-independent projector onto some subspace of the non-null space. To do this, we enlist the aid of the singular value decomposition (SVD) of the equation of motion matrix in order to project out the null space, thus reducing the size of the matrix and eliminating the need for the anti-commutator Green's function. We extend our previous work, dealing with a ferromagnetic Heisenberg monolayer and a momentum-independent projector onto the null space, where both multilayer films and a momentum-dependent projector are considered. We develop the numerical methods capable of handling these cases and offer a computational algorithmus that should be applicable to any similar problem arising in Green's function theory.Comment: 16 pages, 7 figure

    Many-body Green's function theory for thin ferromagnetic anisotropic Heisenberg films: treatment of the exchange anisotropy

    Full text link
    The many-body Green's function theory developed in our previous work for treating the reorientation of the magnetization of thin ferromagnetic films is extended to include the exchange anisotropy. This leads to additional momentum dependencies which require some non-trivial changes in the formalism. The theory is developed for arbitrary spin values S and for multilayers. The effects of the exchange anisotropy and the single-ion anisotropy, which was treated in our earlier work, on the magnetic properties of thin ferromagnetic films are compared.Comment: 24 pages, 7 figures, accepted for publication in Eur. Phys. J.

    Many-body Green's function theory of Heisenberg films

    Get PDF
    The treatment of Heisenberg films with many-body Green's function theory (GFT) is reviewed. The basic equations of GFT are derived in sufficient detail so that the rest of the paper can be understood without having to consult further literature. The main part of the paper is concerned with applications of the formalism to ferromagnetic, antiferromagnetic and coupled ferromagnetic-antiferromagnetic Heisenberg films based on a generalized Tyablikov (RPA) decoupling of the exchange interaction and exchange anisotropy terms and an Anderson-Callen decoupling for a weak single-ion anisotropy. We not only give a consistent description of our own work but also refer extensively to related investigations. We discuss in particular the reorientation of the magnetization as a function of the temperature and film thickness. If the single-ion anisotropy is strong, it can be treated exactly by going to higher-order Green's functions. We also discuss the extension of the theory beyond RPA. Finally the limitations of GFT is pointed out.Comment: 124 pages, 32 figures, accepted by Physics Report

    Anisotropic susceptibilities of thin ferromagnetic films within many-body Green's function theory

    Full text link
    Transverse and parallel static susceptibilities of in-plane uniaxial anisotropic ferromagnetic films are calculated within many-body Green's function theory on the basis of an Heisenberg model. The importance of collective magnetic excitations in particular in the paramagnetic regime are stressed by comparing with mean field calculations. The paper generalizes the work of Jensen et al. [1] to the multilayer case and to spins with S>1/2.Comment: 10 pages, 8 figures, submitted to Phys. Rev.

    Coupled ferro-antiferromagnetic Heisenberg bilayers investigated by many-body Green's function theory

    Full text link
    A theory of coupled ferro- and antiferromagnetic Heisenberg layers is developed within the framework of many-body Green's function theory (GFT) that allows non-collinear magnetic arrangements by introducing sublattice structures. As an example, the coupled ferro- antiferromagnetic (FM-AFM) bilayer is investigated. We compare the results with those of bilayers with purely ferromagnetic or antiferromagnetic couplings. In each case we also show the corresponding results of mean field theory (MFT), in which magnon excitations are completely neglected. There are significant differences between GFT and MFT. A remarkable finding is that for the coupled FM-AFM bilayer the critical temperature decreases with increasing interlayer coupling strength for a simple cubic lattice, whereas the opposite is true for an fcc lattice as well as for MFT for both lattice types.Comment: 17 pages, 6 figures, accepted for publication in J. Phys. Condens. Matter, missing fig.5 adde

    Field-induced magnetic reorientation and effective anisotropy of a ferromagnetic monolayer within spin wave theory

    Get PDF
    The reorientation of the magnetization of a ferromagnetic monolayer is calculated with the help of many-body Green's function theory. This allows, in contrast to other spin wave theories, a satisfactory calculation of magnetic properties over the entire temperature range of interest since interactions between spin waves are taken into account. A Heisenberg Hamiltonian plus a second-order uniaxial single-ion anisotropy and an external magnetic field is treated by the Tyablikov (Random Phase Approximation: RPA) decoupling of the exchange interaction term and the Anderson-Callen decoupling of the anisotropy term. The orientation of the magnetization is determined by the spin components \la S^\alpha\ra (α=x,y,z\alpha=x,y,z), which are calculated with the help of the spectral theorem. The knowledge of the orientation angle Θ0\Theta_0 allows a non-perturbative determination of the temperature dependence of the effective second-order anisotropy coefficient. Results for the Green's function theory are compared with those obtained with mean-field theory (MFT). We find significant differences between these approaches.Comment: to appear in Europ.J.Phys.B, 13 pages, 9 figure

    Evaporation residue cross-sections as a probe for nuclear dissipation in the fission channel of a hot rotating nucleus

    Full text link
    Evaporation residue cross-sections are calculated in a dynamical description of nuclear fission in the framework of the Langevin equation coupled with statistical evporation of light particles. A theoretical model of one-body nuclear friction which was developed earlier, namely the chaos-weighted wall formula, is used in this calculation for the 224Th nucleus. The evaporation residue cross-section is found to be very sensitive to the choice of nuclear friction. The present results indicate that the chaotic nature of the single-particle dynamics within the nuclear volume may provide an explanation for the strong shape-dependence of nuclear friction which is usually required to fit experimental data.Comment: 12 pages including 4 figure
    corecore