203 research outputs found
Metrik und Evolutionsniveau der Höhlenbärenzähne aus der Medvedia-Höhle im Slovensky raj (Slowakei)
Während der dreijähriger Grabungskampagne in einer Forschungskooperation zwischen der Universität Wien (Institut für Paläontologie) und der Comenius-Universität (Die Abteilung der Geologie und Paläontologie) Bratislava, wurden in der Bären-Höhle Medvedia jaskyna, die im Nationalpark Slovenský raj liegt, eine große Zahl an Bärenresten geborgen.
Für die vorliegende Studie standen insgesamt 1016 Zahnelemente (148 Eckzähne sowie 868 Backenzähne) von Höhlenbären zur Verfügung. Durch metrische und morphodynamische Analysen, sowie durch Vergleiche mit anderen Höhlenbärenfaunen konnte die systematische Stellung der Bären geklärt werden. Alle untersuchten Reste gehören einem großwüchsigen, hoch evoluierten Höhlenbären an, der erst vor ca. 50.000 Jahren nach Mitteleuropa eingewandert ist.
Aus der metrischen Verteilung der Eckzähne kann geschlossen werden, dass das Geschlechtsverhältnis ausgeglichen war
Formalization of hydrocarbon conversion scheme of catalytic cracking for mathematical model development
The issue of improving the energy and resource efficiency of advanced petroleum processing can be solved by the development of adequate mathematical model based on physical and chemical regularities of process reactions with a high predictive potential in the advanced petroleum refining. In this work, the development of formalized hydrocarbon conversion scheme of catalytic cracking was performed using thermodynamic parameters of reaction defined by the Density Functional Theory. The list of reaction was compiled according to the results of feedstock structural-group composition definition, which was done by the n-d-m-method, the Hazelvuda method, qualitative composition of feedstock defined by gas chromatography-mass spectrometry and individual composition of catalytic cracking gasoline fraction. Formalized hydrocarbon conversion scheme of catalytic cracking will become the basis for the development of the catalytic cracking kinetic model
The Todd–Coxeter algorithm for semigroups and monoids
The third author was supported by the EPSRC doctoral training partnership number EP/N509759/1 when working on this project. The fourth author would like to thank the School of Mathematics and Statistics of the University of St Andrews and the Cyprus State Scholarship Foundation for their financial support.In this paper we provide an account of the Todd-Coxeter algorithm for computing congruences on semigroups and monoids. We also give a novel description of an analogue for semigroups of the so-called Felsch strategy from the Todd-Coxeter algorithm for groups.Peer reviewe
Assembling of G-strands into novel tetra-molecular parallel G4-DNA nanostructures using avidin–biotin recognition
We describe a method for the preparation of novel long (hundreds of nanometers), uniform, inter-molecular G4-DNA molecules composed of four parallel G-strands. The only long continuous G4-DNA reported so far are intra-molecular structures made of a single G-strand. To enable a tetra-molecular assembly of the G-strands we developed a novel approach based on avidin–biotin biological recognition. The steps of the G4-DNA production include: (i) Enzymatic synthesis of long poly(dG)-poly(dC) molecules with biotinylated poly(dG)-strand; (ii) Formation of a complex between avidin-tetramer and four biotinylated poly(dG)-poly(dC) molecules; (iii) Separation of the poly(dC) strands from the poly(dG)-strands, which are connected to the avidin; (iv) Assembly of the four G-strands attached to the avidin into tetra-molecular G4-DNA. The average contour length of the formed structures, as measured by AFM, is equal to that of the initial poly(dG)-poly(dC) molecules, suggesting a tetra-molecular mechanism of the G-strands assembly. The height of tetra-molecular G4-nanostructures is larger than that of mono-molecular G4-DNA molecules having similar contour length. The CD spectra of the tetra- and mono-molecular G4-DNA are markedly different, suggesting different structural organization of these two types of molecules. The tetra-molecular G4-DNA nanostructures showed clear electrical polarizability. This suggests that they may be useful for molecular electronics
Risk of Dumping Syndrome after Sleeve Gastrectomy and Roux-en-Y Gastric Bypass: Early Results of a Multicentre Prospective Study
Background. Bariatric surgery is an important field of surgery. An important complication of bariatric surgery is dumping syndrome (DS). Aims. To evaluate the incidence of DS in patients undergoing bariatric surgery. Methods. 541 patients included from 5 nutrition and bariatric centers in France underwent either LSG or LRYGB. They were evaluated at 1 month (M1) and 6 months (M6) postoperatively by an interview and completion of a dumping syndrome questionnaire. Results. 268 patients underwent LSG (Group A) and 273 underwent LRYGB. From the LRYGB patients 229 had mechanical gastrojejunoanal anastomosis with 30 mm linear stapler (Group B) and 44 had manual (hand sewn) 15 mm gastrojejunal anastomosis (Group C). Overall incidence of DS was 8.5% at M1 and M6. In LSG group (Group A), only 4 patients (1.49%) reported episodes of DS at M1 and 3 (1.12%) at M6. In Group B, 41 patients (17.90%) reported episodes of DS at M1 and 43 (18.78%) at M6. Group C experienced one case (2.27%) of DS at M1 and none (0%) at M6. Conclusions. Patients undergoing LRYGB, especially with larger gastrojejunal anastomosis, are more prone to developing DS following surgery than patients undergoing LSG or LRYGB with calibrated manual anastomosis
Electronic properties of guanine-based nanowires
We present a first-principle study of the electronic and conduction
properties of a few classes of nanowires constituted of guanine (G) molecules,
self-assembled in different geometries. We first analyze the effect of the
vertical - interaction in model G-stack columns. Then, we exploit the
results obtained from those models to interpret the features of realistic
stacked and hydrogen-bonded structures, namely the guanine quadruple helices
and the planar ribbons. With respect to natural DNA, the different structures
as well as the inclusion of metal cations, drastically affect the bonding
pattern among the bases, introducing novel features in the electronic
properties of the systems. These supramolecular G-aggregates, alternative to
DNA, are expected to show intersting properties for molecular elec tronics
applications.Comment: 30 pages (preprint format), 8 figures. To appear in Solid State
Communications - Special Issue on "New advances on collective phenomena in
one-dimensional systems
Synthesis, Purification and Crystallization of Guanine-rich RNA Oligonucleotides
Guanine-rich RNA oligonucleotides display many novel structural motifs in recent crystal structures. Here we describe the procedures of the chemical synthesis and the purification of such RNA molecules that are suitable for X-ray crystallographic studies. Modifications of the previous purification methods allow us to obtain better yields in shorter time. We also provide 24 screening conditions that are very effective in crystallization of the guanine-rich RNA oligonucleotides. Optimal crystallization conditions are usually achieved by adjustment of the concentration of the metal ions and pH of the buffer. Crystals obtained by this method usually diffract to high resolution
Crystallization and characterization of the thallium form of the Oxytricha nova G-quadruplex
The crystal structure of the Tl(+) form of the G-quadruplex formed from the Oxytricha nova telomere sequence, d(G(4)T(4)G(4)), has been solved to 1.55 Å. This G-quadruplex contains five Tl(+) ions, three of which are interspersed between adjacent G-quartet planes and one in each of the two thymine loops. The structure displays a high degree of similarity to the K(+) crystal structure [Haider et al. (2002), J. Mol. Biol., 320, 189–200], including the number and location of the monovalent cation binding sites. The highly isomorphic nature of the two structures, which contain such a large number of monovalent binding sites (relative to nucleic acid content), verifies the ability of Tl(+) to mimic K(+) in nucleic acids. Information from this report confirms and extends the assignment of (205)Tl resonances from a previous report [Gill et al. (2005), J. Am. Chem. Soc., 127, 16 723–16 732] where (205)Tl NMR was used to study monovalent cation binding to this G-quadruplex. The assignment of these resonances provides evidence for the occurrence of conformational dynamics in the thymine loop region that is in slow exchange on the (205)Tl timescale
Backbone-base inclination as a fundamental determinant of nucleic acid self- and cross-pairing
The crystal structure of the duplex formed by oligo(2′,3′-dideoxy-β-d-glucopyranosyl)nucleotides (homo-DNA) revealed strongly inclined backbone and base-pair axes [Egli,M., Pallan,P.S., Pattanayek,R., Wilds,C.J., Lubini,P., Minasov,G., Dobler,M., Leumann,C.J. and Eschenmoser,A. (2006) Crystal structure of homo-DNA and nature's choice of pentose over hexose in the genetic system. J. Am. Chem. Soc., 128, 10847–10856]. This inclination is easily perceived because homo-DNA exhibits only a modest helical twist. Conversely, the tight coiling of strands conceals that the backbone-base inclinations for A- (DNA and RNA) and B-form (DNA) duplexes differ considerably. We have defined a parameter ηB that corresponds to the local inclination between sugar-phosphate backbone and base plane in nucleic acid strands. Here, we show its biological significance as a predictive measure for the relative strand polarities (antiparallel, aps, or parallel, ps) in duplexes of DNA, RNA and artificial nucleic acid pairing systems. The potential of formation of ps duplexes between complementary 16-mers with eight A and U(T) residues each was investigated with DNA, RNA, 2′-O-methylated RNA, homo-DNA and p-RNA, the ribopyranosyl isomer of RNA. The thermodynamic stabilities of the corresponding aps duplexes were also measured. As shown previously, DNA is capable of forming both ps and aps duplexes. However, all other tested systems are unable to form stable ps duplexes with reverse Watson–Crick (rWC) base pairs. This observation illustrates the handicap encountered by nucleic acid systems with inclinations ηB that differ significantly from 0° to form a ps rWC paired duplex. Accordingly, RNA with a backbone-base inclination of −30°, pairs strictly in an aps fashion. On the other hand, the more or less perpendicular orientation of backbone and bases in DNA allows it to adopt a ps rWC paired duplex. In addition to providing a rationalization of relative strand polarity with nucleic acids, the backbone-base inclination parameter is also a determinant of cross-pairing. Thus, systems with strongly deviating ηB angles will not pair with each other. Nucleic acid pairing systems with significant backbone-base inclinations can also be expected to display different stabilities depending on which terminus carries unpaired nucleotides. The negative inclination of RNA is consistent with the higher stability of duplexes with 3′- compared to those with 5′-dangling ends
Functional binding of hexanucleotides to 3C protease of hepatitis A virus
Oligonucleotides as short as 6 nt in length have been shown to bind specifically and tightly to proteins and affect their biological function. Yet, sparse structural data are available for corresponding complexes. Employing a recently developed hexanucleotide array, we identified hexadeoxyribonucleotides that bind specifically to the 3C protease of hepatitis A virus (HAV 3Cpro). Inhibition assays in vitro identified the hexanucleotide 5′-GGGGGT-3′ (G5T) as a 3Cpro protease inhibitor. Using 1H NMR spectroscopy, G5T was found to form a G-quadruplex, which might be considered as a minimal aptamer. With the help of 1H, 15N-HSQC experiments the binding site for G5T was located to the C-terminal β-barrel of HAV 3Cpro. Importantly, the highly conserved KFRDI motif, which has previously been identified as putative viral RNA binding site, is not part of the G5T-binding site, nor does G5T interfere with the binding of viral RNA. Our findings demonstrate that sequence-specific nucleic acid–protein interactions occur with oligonucleotides as small as hexanucleotides and suggest that these compounds may be of pharmaceutical relevance
- …
