74 research outputs found

    Characterization of neural crest-derived stem cells isolated from human bone marrow for improvement of transplanted islet function

    Get PDF
    Background: Murine boundary cap-derived neural crest stem cells (NCSCs) are capable of enhancing islet function by stimulating beta cell proliferation as well as increasing the neural and vascular density in the islets both in vitro and in vivo. This study aimed to isolate NCSC-like cells from human bone marrow. Methods: CD271 magnetic cell separation and culture techniques were used to purify a NCSC-enriched population of human bone marrow. Analyses of the CD271+ and CD271- fractions in terms of protein expression were performed, and the capacity of the CD271+ bone marrow cells to form 3-dimensional spheres when grown under non-adherent conditions was also investigated. Moreover, the NCSC characteristics of the CD271+ cells were evaluated by their ability to migrate toward human islets as well as human islet-like cell clusters (ICC) derived from pluripotent stem cells. Results: The CD271+ bone marrow population fulfilled the criterion of being multipotent stem cells, having the potential to differentiate into glial cells, neurons as well as myofibroblasts in vitro. They had the capacity to form 3-dimensional spheres as well as an ability to migrate toward human islets, further supporting their NCSC identity. Additionally, we demonstrated similar migration features toward stem cell-derived ICC. Conclusion: The results support the NCSC identity of the CD271-enriched human bone marrow population. It remains to investigate whether the human bone marrow-derived NCSCs have the ability to improve transplantation efficacy of not only human islets but stem cell-derived ICC as well.Peer reviewe

    Шоп-туризм: проблемы и перспективы развития в Республике Беларусь

    Get PDF
    Материалы XV Междунар. науч.-техн. конф. студентов, аспирантов и молодых ученых, Гомель, 23–24 апр. 2015 г

    Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells

    Get PDF
    Transplantation of pancreatic islet cells derived from human pluripotent stem cells is a promising treatment for diabetes. Despite progress in the generation of stem-cell-derived islets (SC-islets), no detailed characterization of their functional properties has been conducted. Here, we generated functionally mature SC-islets using an optimized protocol and benchmarked them comprehensively against primary adult islets. Biphasic glucose-stimulated insulin secretion developed during in vitro maturation, associated with cytoarchitectural reorganization and the increasing presence of alpha cells. Electrophysiology, signaling and exocytosis of SC-islets were similar to those of adult islets. Glucose-responsive insulin secretion was achieved despite differences in glycolytic and mitochondrial glucose metabolism. Single-cell transcriptomics of SC-islets in vitro and throughout 6 months of engraftment in mice revealed a continuous maturation trajectory culminating in a transcriptional landscape closely resembling that of primary islets. Our thorough evaluation of SC-islet maturation highlights their advanced degree of functionality and supports their use in further efforts to understand and combat diabetes. Pancreatic islets derived from stem cells are benchmarked against primary cells.Peer reviewe

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Implantation-Site Dependent Differences in Engraftment and Function of Transplanted Pancreatic Islets

    No full text
    Transplanting pancreatic islets into the liver through the portal vein is currently the most common procedure in clinical islet transplantations for treating patients with brittle type 1 diabetes. However, most islet grafts fail within a 5-year period necessitating retransplantation. The vascular connections are disrupted at islet isolation and implanted islets depend on diffusion of oxygen and nutrients in the immediate posttransplantation period. Rapid and efficient revascularization is of utmost importance for the survival and long-term function of transplanted islets. In this thesis, the influence of the implantation microenvironment for islet engraftment and function was studied. Islets were transplanted into the liver, the renal subcapsular site or the pancreas. Islets implanted into the liver contained fewer glucagon-positive cells than islets implanted to the kidney and endogenous islets. Intraportally transplanted islets responded with insulin and glucagon release to secretagogues, but only when stimulated through the hepatic artery. Thus, the intrahepatic grafts were selectively revascularized from the hepatic artery. The vascular density in human islets transplanted into the liver of athymic mice was markedly lower when compared to human islets grafted to the kidney. Islets implanted into their physiological environment, the pancreas, were markedly better revascularized. Insulin content, glucose-stimulated insulin release, (pro)insulin biosynthesis and glucose oxidation rate were markedly decreased in transplanted islets retrieved from the liver, both when compared to endogenous and transplanted islets retrieved from the pancreas. Only minor changes in metabolic functions were observed in islets implanted into the pancreas when compared to endogenous islets. The present findings demonstrate that the microenvironment has a major impact on the engraftment of transplanted islets. Elucidating the beneficial factors that promote engraftment would improve the survival and long-term function of transplanted islets. Ultimately, islet transplantation may be provided to an increased number of patients with type 1 diabetes

    A new contribution to research metrics

    No full text

    Improving Pancreatic Islet Engraftment after Islet Transplantation through Administration of Gamma-Secretase Inhibitor DAPT

    No full text
    Abstract: Rapid and effective revascularization of transplanted pancreatic islets is vital for the survival and function of the islet graft. Insufficient vascularization after islet transplantation may be one causative factor to the failure of islet grafts in clinical transplantation. The aim of this study was to investigate if N-{N-[2-(3,5-Difluorophenyl)acetyl]-(S)-alanyl}- (S)-phenylglycine- tert-butyl ester (DAPT) administration can improve engraftment of transplanted islets. DAPT is a dipeptidic gamma-secretase inhibitor which inhibits Notch signaling. Notch signaling is involved in angiogenesis and inhibition may result in excessive formation of new blood vessels. Excessive vasculature may be beneficial in the immediate posttransplantation period since the transplanted islets are dependent on diffusion of oxygen and nutrients before revascularization. Islets isolated from C57BL/6 mice were transplanted beneath the renal capsule of C57BL/6 mice. After islet transplantation DAPT or vehicle was administered subcutaneously for three days. Mice treated with DAPT had an increased vascular density when compared to control mice two days and one month posttransplantation. Moreover, mice treated with DAPT showed 54±8.2 % functional blood vessels compared to 40±6.7 % in control mice two days posttransplantation. After one month, the fraction of functional blood vessels increased to 86±2.8 % in DAPT treated mice compared to 61±9.4 % in control mice. Our findings demonstrated that administration of DAPT may be a feasible strategy to improve engraftment of transplanted islets

    Small Mouse Islets Are Deficient in Glucagon-Producing Alpha Cells but Rich in Somatostatin-Secreting Delta Cells

    No full text
    Small and big mouse islets were compared with special reference to their content of glucagon-producing alpha-cells and somatostatin-producing delta-cells. Areas stained for glucagon and somatostatin were measured in the largest cross section of small (diameter < 60 mu m) and big (diameter > 100 mu m) islets. Comparison of the areas indicated proportionally more delta- than alpha-cells in the small islets. After isolation with collagenase these islets were practically devoid of alpha-cells. We evaluated the functional importance of the islet size by measuring the Ca2+ signal for insulin release. A majority of the small islets responded to the hyperpolarization action of somatostatin with periodic decrease of cytoplasmic Ca2+ when glucose was elevated after tolbutamide blockade of the K-ATP channels

    Evaluating the quality of evidence of clinical interventions for children aged 6 to 12 years old with ADHD: a systematic review

    No full text
    Attention deficit hyperactivity disorder (ADHD) is one of the most commonly diagnosed disorders in childhood. Children with ADHD have inattention and/or hyperactivity-impulsivity problems. In recent years, the rise in diagnosis of ADHD has resulted in increased research in novel treatments to treat ADHD symptoms. Therefore, this systematic review gathers and evaluates the quality of evidence from recent studies that analyse the efficacy of existing and novel clinical interventions for children with ADHD, aged 6 - 12. Following a pre-registered review protocol, studies were identified from 2012 - 2022 in the digital repository, PubMed. A total of 3899 unique studies were gathered but only eleven studies met the inclusion criteria and were included in the qualitative analysis. Out of the eleven studies, only two studies are deemed to have “sufficient” evidence to support their findings on the efficacy of clinical interventions for ADHD. However, the two studies proceeded to score poorly on other additional quality indicators. Overall, the quality of evidence for clinical intervention studies on children with ADHD is poor, especially so for novel interventions. Novel interventions tend to be poorly designed and biassed. Future studies should work on improving the quality of evidence for clinical interventions, especially novel interventions, and researchers should improve future research practices outlined in the study.Bachelor of Social Sciences in Psycholog

    Decreased beta-Cell Proliferation and Vascular Density in a Subpopulation of Low-Oxygenated Male Rat Islets

    No full text
    Low-oxygenated and dormant islets with a capacity to become activated when neededmay play a crucial role in the complex machinery behind glucose homeostasis. We hypothesized that low-oxygenated islets, when not functionally challenged, do not rapidly cycle between activation and inactivation but are a stable population that remain low-oxygenated. As this was confirmed, we aimed to characterize these islets with regard to cell composition, vascular density, and endocrine cell proliferation. The 2-nitroimidazole low-oxygenation marker pimonidazole was administered as a single or repeated dose to Wistar Furth rats. The stability of oxygen status of islets was evaluated by immunohistochemistry as the number of islets with incorporated pimonidazole adducts after one or repeated pimonidazole injections. Adjacent sections were evaluated for islet cell composition, vascular density, and endocrine cell proliferation. Single and repeated pimonidazole injections over an 8-hour period yielded accumulation of pimonidazole adducts in the same islets. An average of 30% of all islets was in all cases positively stained for pimonidazole adducts. These islets showed a similar endocrine cell composition as other islets but had lower vascular density and beta-cell proliferation. In conclusion, low-oxygenated islets were found to be a stable subpopulation of islets for at least 8 hours. Although they have previously been observed to be less functionally active, their islet cell composition was similar to that of other islets. Consistent with their lower oxygenation, they had fewer blood vessels than other islets. Notably, beta-cell regeneration preferentially occurred in better-oxygenated islets.Title in thesis list of papers: Decreased beta cell proliferation and vascular density in a subpopulation of low-oxygenated rat islets</p
    corecore