3,031 research outputs found

    Obscurin and KCTD6 regulate cullin-dependent small ankyrin-1 (sAnk1.5) protein turnover.

    Get PDF
    Protein turnover through cullin-3 is tightly regulated by posttranslational modifications, the COP9 signalosome, and BTB/POZ-domain proteins that link cullin-3 to specific substrates for ubiquitylation. In this paper, we report how potassium channel tetramerization domain containing 6 (KCTD6) represents a novel substrate adaptor for cullin-3, effectively regulating protein levels of the muscle small ankyrin-1 isoform 5 (sAnk1.5). Binding of sAnk1.5 to KCTD6, and its subsequent turnover is regulated through posttranslational modification by nedd8, ubiquitin, and acetylation of C-terminal lysine residues. The presence of the sAnk1.5 binding partner obscurin, and mutation of lysine residues increased sAnk1.5 protein levels, as did knockdown of KCTD6 in cardiomyocytes. Obscurin knockout muscle displayed reduced sAnk1.5 levels and mislocalization of the sAnk1.5/KCTD6 complex. Scaffolding functions of obscurin may therefore prevent activation of the cullin-mediated protein degradation machinery and ubiquitylation of sAnk1.5 through sequestration of sAnk1.5/KCTD6 at the sarcomeric M-band, away from the Z-disk-associated cullin-3. The interaction of KCTD6 with ankyrin-1 may have implications beyond muscle for hereditary spherocytosis, as KCTD6 is also present in erythrocytes, and erythrocyte ankyrin isoforms contain its mapped minimal binding site

    EM Decay of X(3872) as the 11D2(2−+)1{^1D_2}(2^{-+}) charmonium

    Full text link
    The recently BaBar results raise the possibility that X(3872) has negative parity. This makes people reconsider assigning X(3872) to the 11D2(ccˉ)1{^1D_2}(c\bar c) state. In this paper we give a general form of the wave function of 2−+2^{-+} mesons. By solving the instantaneous Bethe-Salpeter equation, we get the mass spectrum and corresponding wave functions. We calculate electromagnetic decay widths of the first 2−+2^{-+} state which we assume to be the X(3872) particle. The results are Γ(2−+(3872)→J/ÏˆÎł)=1.59−0.42+0.53\Gamma(2^{-+}(3872)\rightarrow J/\psi\gamma) = 1.59^{+0.53}_{-0.42} keV, Γ(2−+(3872)→ψ(2S)Îł)=2.87−0.97+1.46\Gamma(2^{-+}(3872)\rightarrow \psi(2S)\gamma) = 2.87^{+1.46}_{-0.97} eV and Γ(2−+(3872)→ψ(3770)Îł)=0.135−0.047+0.066\Gamma(2^{-+}(3872)\rightarrow \psi(3770)\gamma) = 0.135^{+0.066}_{-0.047} keV. The ratio of branch fractions of the second and first channel is about 0.002, which is inconsistent with the experimental value 3.4±1.43.4\pm 1.4. So X(3872) is unlikely to be a 2−+2^{-+} charmonium state. In addition, we obtain a relatively large decay width for 2−+(3872)→hcÎł2^{-+}(3872)\rightarrow h_c\gamma channel which is 392−111+62392^{+62}_{-111} keV.Comment: Revised versio

    Functional analysis of the zinc finger and activation domains of Glis3 and mutant Glis3(NDH1)

    Get PDF
    The KrĂŒppel-like zinc finger protein Gli-similar 3 (Glis3) plays a critical role in pancreatic development and has been implicated in a syndrome with neonatal diabetes and hypothyroidism (NDH). In this study, we examine three steps critical in the mechanism of the transcriptional regulation by Glis3: its translocation to the nucleus, DNA binding and transcriptional activity. We demonstrate that the putative bipartite nuclear localization signal is not required, but the tetrahedral configuration of the fourth zinc finger is essential for the nuclear localization of Glis3. We identify (G/C)TGGGGGGT(A/C) as the consensus sequence of the optimal, high-affinity Glis3 DNA-binding site (Glis-BS). All five zinc finger motifs are critical for efficient binding of Glis3 to Glis-BS. We show that Glis3 functions as a potent inducer of (Glis-BS)-dependent transcription and contains a transactivation function at its C-terminus. A mutation in Glis3 observed in NDH1 patients results in a frameshift mutation and a C-terminal truncated Glis3. We demonstrate that this truncation does not effect the nuclear localization but results in the loss of Glis3 transactivating activity. The loss in Glis3 transactivating function may be responsible for the abnormalities observed in NDH1

    A data compression and optimal galaxy weights scheme for Dark Energy Spectroscopic Instrument and weak lensing data sets

    Get PDF
    Combining different observational probes, such as galaxy clustering and weak lensing, is a promising technique for unveiling the physics of the Universe with upcoming dark energy experiments. The galaxy redshift sample from the Dark Energy Spectroscopic Instrument (DESI) will have a significant overlap with major ongoing imaging surveys specifically designed for weak lensing measurements: The Kilo-Degree Survey (KiDS), the Dark Energy Survey (DES), and the Hyper Suprime-Cam (HSC) survey. In this work, we analyse simulated redshift and lensing catalogues to establish a new strategy for combining high-quality cosmological imaging and spectroscopic data, in view of the first-year data assembly analysis of DESI. In a test case fitting for a reduced parameter set, we employ an optimal data compression scheme able to identify those aspects of the data that are most sensitive to cosmological information and amplify them with respect to other aspects of the data. We find this optimal compression approach is able to preserve all the information related to the growth of structures

    Enhanced genetic maps from family-based disease studies: population-specific comparisons

    Get PDF
    Abstract Background Accurate genetic maps are required for successful and efficient linkage mapping of disease genes. However, most available genome-wide genetic maps were built using only small collections of pedigrees, and therefore have large sampling errors. A large set of genetic studies genotyped by the NHLBI Mammalian Genotyping Service (MGS) provide appropriate data for generating more accurate maps. Results We collected a large sample of uncleaned genotype data for 461 markers generated by the MGS using the Weber screening sets 9 and 10. This collection includes genotypes for over 4,400 pedigrees containing over 17,000 genotyped individuals from different populations. We identified and cleaned numerous relationship and genotyping errors, as well as verified the marker orders. We used this dataset to test for population-specific genetic maps, and to re-estimate the genetic map distances with greater precision; standard errors for all intervals are provided. The map-interval sizes from the European (or European descent), Chinese, and Hispanic samples are in quite good agreement with each other. We found one map interval on chromosome 8p with a statistically significant size difference between the European and Chinese samples, and several map intervals with significant size differences between the African American and Chinese samples. When comparing Palauan with European samples, a statistically significant difference was detected at the telomeric region of chromosome 11p. Several significant differences were also identified between populations in chromosomal and genome lengths. Conclusions Our new population-specific screening set maps can be used to improve the accuracy of disease-mapping studies. As a result of the large sample size, the average length of the 95% confidence interval (CI) for a 10 cM map interval is only 2.4 cM, which is considerably smaller than on previously published maps.http://deepblue.lib.umich.edu/bitstream/2027.42/112826/1/12881_2010_Article_748.pd

    Synthetic light-cone catalogues of modern redshift and weak lensing surveys waith abacussummit

    Get PDF
    The joint analysis of different cosmological probes, such as galaxy clustering and weak lensing, can potentially yield invaluable insights into the nature of the primordial Universe, dark energy, and dark matter. However, the development of high-fidelity theoretical models is a necessary stepping stone. Here, we present public high-resolution weak lensing maps on the light-cone, generated using the N-body simulation suite abacussummit, and accompanying weak lensing mock catalogues, tuned to the Early Data Release small-scale clustering measurements of the Dark Energy Spectroscopic Instrument. Available in this release are maps of the cosmic shear, deflection angle, and convergence fields at source redshifts ranging from z = 0.15 to 2.45 as well as cosmic microwave background convergence maps for each of the 25 base-resolution simulations (and Npart = 69123) as well as for the two huge simulations (and Npart = 86403) at the fiducial abacussummit cosmology. The pixel resolution of each map is 0.21 arcmin, corresponding to a healpix Nside of 16 384. The sky coverage of the base simulations is an octant until z ≈ 0.8 (decreasing to about 1800 deg2 at z ≈ 2.4), whereas the huge simulations offer full-sky coverage until z ≈ 2.2. Mock lensing source catalogues are sampled matching the ensemble properties of the Kilo-Degree Survey, Dark Energy Survey, and Hyper Suprime-Cam data sets. The mock catalogues are validated against theoretical predictions for various clustering and lensing statistics, such as correlation multipoles, galaxy-shear, and shear-shear, showing excellent agreement. All products can be downloaded via a Globus endpoint (see Data Availability section)

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT
    • 

    corecore