111 research outputs found

    Measuring the slopes of mass profiles for dwarf spheroidals in triaxial CDM potentials

    Full text link
    We generate stellar distribution functions (DFs) in triaxial haloes in order to examine the reliability of slopes ΓΔlogM/Δlogr\Gamma\equiv \Delta {\rm log} M / \Delta {\rm log} r inferred by applying mass estimators of the form MReσ2M\propto R_e\sigma^2 (i.e. assuming spherical symmetry, where ReR_e and σ\sigma are luminous effective radius and global velocity dispersion, respectively) to two stellar sub-populations independently tracing the same gravitational potential. The DFs take the form f(E)f(E), are dynamically stable, and are generated within triaxial potentials corresponding directly to subhaloes formed in cosmological dark-matter-only simulations of Milky Way and galaxy cluster haloes. Additionally, we consider the effect of different tracer number density profiles (cuspy and cored) on the inferred slopes of mass profiles. For the isotropic DFs considered here, we find that halo triaxiality tends to introduce an anti-correlation between ReR_e and σ\sigma when estimated for a variety of viewing angles. The net effect is a negligible contribution to the systematic error associated with the slope of the mass profile, which continues to be dominated by a bias toward greater overestimation of masses for more-concentrated tracer populations. We demonstrate that simple mass estimates for two distinct tracer populations can give reliable (and cosmologically meaningful) lower limits for Γ\Gamma, irrespective of the degree of triaxiality or shape of the tracer number density profile.Comment: 5 pages, 4 figures, submitted to MNRA

    Astrophysical Tests of Dark Matter with Maunakea Spectroscopic Explorer

    Get PDF
    We discuss how astrophysical observations with the Maunakea Spectroscopic Explorer (MSE), a high-multiplexity (about 4300 fibers), wide field-of-view (1.5 square degree), large telescope aperture (11.25 m) facility, can probe the particle nature of dark matter. MSE will conduct a suite of surveys that will provide critical input for determinations of the mass function, phase-space distribution, and internal density profiles of dark matter halos across all mass scales. N-body and hydrodynamical simulations of cold, warm, fuzzy and self-interacting dark matter suggest that non-trivial dynamics in the dark sector could have left an imprint on structure formation. Analysed within these frameworks, the extensive and unprecedented datasets produced by MSE will be used to search for deviations away from cold and collisionless dark matter model. MSE will provide an improved estimate of the local density of dark matter, critical for direct detection experiments, and will improve estimates of the J-factor for indirect searches through self-annihilation or decay into Standard Model particles. MSE will determine the impact of low mass substructures on the dynamics of Milky Way stellar streams in velocity space, and will allow for estimates of the density profiles of the dark matter halos of Milky Way dwarf galaxies using more than an order of magnitude more tracers. In the low redshift Universe, MSE will provide critical redshifts to pin down the luminosity functions of vast numbers of satellite systems, and MSE will be an essential component of future strong lensing measurements to constrain the halo mass function. Across nearly all mass scales, the improvements offered by MSE, in comparison to other facilities, are such that the relevant analyses are limited by systematics rather than statistics.Comment: 44 pages, 19 figures. To appear as a chapter for "The Detailed Science Case for the Maunakea Spectroscopic Explorer, 2019

    The experimental power of FR900359 to study Gq-regulated biological processes.

    Get PDF
    Despite the discovery of heterotrimeric αβγ G proteins ∼25 years ago, their selective perturbation by cell-permeable inhibitors remains a fundamental challenge. Here we report that the plant-derived depsipeptide FR900359 (FR) is ideally suited to this task. Using a multifaceted approach we systematically characterize FR as a selective inhibitor of Gq/11/14 over all other mammalian Gα isoforms and elaborate its molecular mechanism of action. We also use FR to investigate whether inhibition of Gq proteins is an effective post-receptor strategy to target oncogenic signalling, using melanoma as a model system. FR suppresses many of the hallmark features that are central to the malignancy of melanoma cells, thereby providing new opportunities for therapeutic intervention. Just as pertussis toxin is used extensively to probe and inhibit the signalling of Gi/o proteins, we anticipate that FR will at least be its equivalent for investigating the biological relevance of Gq

    Allosteric Indole Amide Inhibitors of p97: Identification of a Novel Probe of the Ubiquitin Pathway

    Get PDF
    A high-throughput screen to discover inhibitors of p97 ATPase activity identified an indole amide that bound to an allosteric site of the protein. Medicinal chemistry optimization led to improvements in potency and solubility. Indole amide 3 represents a novel uncompetitive inhibitor with excellent physical and pharmaceutical properties that can be used as a starting point for drug discovery efforts

    Observations of Lyα\alpha Emitters at High Redshift

    Full text link
    In this series of lectures, I review our observational understanding of high-zz Lyα\alpha emitters (LAEs) and relevant scientific topics. Since the discovery of LAEs in the late 1990s, more than ten (one) thousand(s) of LAEs have been identified photometrically (spectroscopically) at z0z\sim 0 to z10z\sim 10. These large samples of LAEs are useful to address two major astrophysical issues, galaxy formation and cosmic reionization. Statistical studies have revealed the general picture of LAEs' physical properties: young stellar populations, remarkable luminosity function evolutions, compact morphologies, highly ionized inter-stellar media (ISM) with low metal/dust contents, low masses of dark-matter halos. Typical LAEs represent low-mass high-zz galaxies, high-zz analogs of dwarf galaxies, some of which are thought to be candidates of population III galaxies. These observational studies have also pinpointed rare bright Lyα\alpha sources extended over 10100\sim 10-100 kpc, dubbed Lyα\alpha blobs, whose physical origins are under debate. LAEs are used as probes of cosmic reionization history through the Lyα\alpha damping wing absorption given by the neutral hydrogen of the inter-galactic medium (IGM), which complement the cosmic microwave background radiation and 21cm observations. The low-mass and highly-ionized population of LAEs can be major sources of cosmic reionization. The budget of ionizing photons for cosmic reionization has been constrained, although there remain large observational uncertainties in the parameters. Beyond galaxy formation and cosmic reionization, several new usages of LAEs for science frontiers have been suggested such as the distribution of {\sc Hi} gas in the circum-galactic medium and filaments of large-scale structures. On-going programs and future telescope projects, such as JWST, ELTs, and SKA, will push the horizons of the science frontiers.Comment: Lecture notes for `Lyman-alpha as an Astrophysical and Cosmological Tool', Saas-Fee Advanced Course 46. Verhamme, A., North, P., Cantalupo, S., & Atek, H. (eds.) --- 147 pages, 103 figures. Abstract abridged. Link to the lecture program including the video recording and ppt files : https://obswww.unige.ch/Courses/saas-fee-2016/program.cg

    Neuromatch Academy: a 3-week, online summer school in computational neuroscience

    Get PDF

    Combinations of single-top-quark production cross-section measurements and vertical bar f(LV)V(tb)vertical bar determinations at root s=7 and 8 TeV with the ATLAS and CMS experiments

    Get PDF
    This paper presents the combinations of single-top-quark production cross-section measurements by the ATLAS and CMS Collaborations, using data from LHC proton-proton collisions at = 7 and 8 TeV corresponding to integrated luminosities of 1.17 to 5.1 fb(-1) at = 7 TeV and 12.2 to 20.3 fb(-1) at = 8 TeV. These combinations are performed per centre-of-mass energy and for each production mode: t-channel, tW, and s-channel. The combined t-channel cross-sections are 67.5 +/- 5.7 pb and 87.7 +/- 5.8 pb at = 7 and 8 TeV respectively. The combined tW cross-sections are 16.3 +/- 4.1 pb and 23.1 +/- 3.6 pb at = 7 and 8 TeV respectively. For the s-channel cross-section, the combination yields 4.9 +/- 1.4 pb at = 8 TeV. The square of the magnitude of the CKM matrix element V-tb multiplied by a form factor f(LV) is determined for each production mode and centre-of-mass energy, using the ratio of the measured cross-section to its theoretical prediction. It is assumed that the top-quark-related CKM matrix elements obey the relation |V-td|, |V-ts| << |V-tb|. All the |f(LV)V(tb)|(2) determinations, extracted from individual ratios at = 7 and 8 TeV, are combined, resulting in |f(LV)V(tb)| = 1.02 +/- 0.04 (meas.) +/- 0.02 (theo.). All combined measurements are consistent with their corresponding Standard Model predictions.Peer reviewe

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF
    corecore