553 research outputs found

    The All-Data-Based Evolutionary Hypothesis of Ciliated Protists with a Revised Classification of the Phylum Ciliophora (Eukaryota, Alveolata)

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The file attached is the published version of the article

    Erasing Sensorimotor Memories via PKMζ Inhibition

    Get PDF
    Sensorimotor cortex has a role in procedural learning. Previous studies suggested that this learning is subserved by long-term potentiation (LTP), which is in turn maintained by the persistently active kinase, protein kinase Mzeta (PKMζ). Whereas the role of PKMζ in animal models of declarative knowledge is established, its effect on procedural knowledge is not well understood. Here we show that PKMζ inhibition, via injection of zeta inhibitory peptide (ZIP) into the rat sensorimotor cortex, disrupts sensorimotor memories for a skilled reaching task even after several weeks of training. The rate of relearning the task after the memory disruption by ZIP was indistinguishable from the rate of initial learning, suggesting no significant savings after the memory loss. These results indicate a shared molecular mechanism of storage for declarative and procedural forms of memory

    Accelerated Evolution of Mitochondrial but Not Nuclear Genomes of Hymenoptera: New Evidence from Crabronid Wasps

    Get PDF
    Mitochondrial genes in animals are especially useful as molecular markers for the reconstruction of phylogenies among closely related taxa, due to the generally high substitution rates. Several insect orders, notably Hymenoptera and Phthiraptera, show exceptionally high rates of mitochondrial molecular evolution, which has been attributed to the parasitic lifestyle of current or ancestral members of these taxa. Parasitism has been hypothesized to entail frequent population bottlenecks that increase rates of molecular evolution by reducing the efficiency of purifying selection. This effect should result in elevated substitution rates of both nuclear and mitochondrial genes, but to date no extensive comparative study has tested this hypothesis in insects. Here we report the mitochondrial genome of a crabronid wasp, the European beewolf (Philanthus triangulum, Hymenoptera, Crabronidae), and we use it to compare evolutionary rates among the four largest holometabolous insect orders (Coleoptera, Diptera, Hymenoptera, Lepidoptera) based on phylogenies reconstructed with whole mitochondrial genomes as well as four single-copy nuclear genes (18S rRNA, arginine kinase, wingless, phosphoenolpyruvate carboxykinase). The mt-genome of P. triangulum is 16,029 bp in size with a mean A+T content of 83.6%, and it encodes the 37 genes typically found in arthropod mt genomes (13 protein-coding, 22 tRNA, and two rRNA genes). Five translocations of tRNA genes were discovered relative to the putative ancestral genome arrangement in insects, and the unusual start codon TTG was predicted for cox2. Phylogenetic analyses revealed significantly longer branches leading to the apocritan Hymenoptera as well as the Orussoidea, to a lesser extent the Cephoidea, and, possibly, the Tenthredinoidea than any of the other holometabolous insect orders for all mitochondrial but none of the four nuclear genes tested. Thus, our results suggest that the ancestral parasitic lifestyle of Apocrita is unlikely to be the major cause for the elevated substitution rates observed in hymenopteran mitochondrial genomes

    Trastuzumab in the Adjuvant Treatment of HER2-Positive Early Breast Cancer Patients: A Meta-Analysis of Published Randomized Controlled Trials

    Get PDF
    BACKGROUND: Adjuvant trastuzumab therapy has yielded conflicting results for overall survival, concerns about central nervous system (CNS) metastasis, and questions about optimal schedule. Therefore, we carried out a meta-analysis to assess the benefits of concurrent or sequential trastuzumab with adjuvant chemotherapy for early breast cancer patients with HER2-positive tumors. METHODS: Computerized and manual searches were performed to identify randomized clinical trials comparing adjuvant chemotherapy with or without trastuzumab in HER2-positive early breast cancer patients. Odds ratios were used to estimate the association between the addition of trastuzumab to adjuvant chemotherapy and various survival outcomes. The fixed-effects or random-effects model was used to combine data. FINDINGS: With six eligible studies identified, this analysis demonstrated that patients with HER2-positive breast cancer derived benefit in disease-free survival, overall survival, locoregional recurrence and distant recurrence (all P<0.001) from the addition of trastuzumab to adjuvant chemotherapy, whereas trastuzumab did worse in CNS recurrence as compared to the control group (P = 0.018). Furthermore, concomitant use of trastuzumab significantly lowered the hazard of death (P<0.001) but bore a higher incidence of CNS recurrence (P = 0.010), while statistical significance failed to be discerned for either overall survival (P = 0.069) or CNS metastasis (P = 0.374) between the sequential and observation arms. CONCLUSION: This analysis verifies the efficacy of trastuzumab in the adjuvant setting. Additionally, our findings indirectly corroborate the superiority of concurrent trastuzumab to sequential use and also illuminate that prolonged survival is the possible reason for the higher incidence of CNS with trastuzumab versus observation

    Molecular and Phylogenetic Analyses Suggest an Additional Hepatitis B Virus Genotype “I”

    Get PDF
    A novel hepatitis B virus (HBV) strain (W29) was isolated from serum samples in the northwest of China. Phylogenetic and distance analyses indicate that this strain is grouped with a series of distinct strains discovered in Vietnam and Laos that have been proposed to be a new genotype I. TreeOrderScan and GroupScan methods were used to study the intergenotype recombination of this special group. Recombination plots and tree maps of W29 and these putative genotype I strains exhibit distinct characteristics that are unexpected in typical genotype C strains of HBV. The amino acids of P gene, S gene, X gene, and C gene of all genotypes (including subtypes) were compared, and eight unique sites were found in genotype I. In vitro and in vivo experiments were also conducted to determine phenotypic characteristics between W29 and other representative strains of different genotypes obtained from China. Secretion of HBsAg in Huh7 cells is uniformly abundant among genotypes A, B, C, and I (W29), but not genotype D. HBeAg secretion is low in genotype I (W29), whose level is close to genotype A and much lower than genotypes B, C, and D. Results from the acute hydrodynamic injection mouse model also exhibit a similar pattern. From an overview of the results, the viral markers of W29 (I1) in Huh7 cells and mice had a more similar level to genotype A than genotype C, although the latter was closer to W29 in distance analysis. All evidence suggests that W29, together with other related strains found in Vietnam and Laos, should be classified into a new genotype

    Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The model bacterium <it>Clostridium cellulolyticum </it>efficiently degrades crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H<sub>2 </sub>and CO<sub>2</sub>, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels production. Therefore genetic engineering will likely be required to improve the ethanol yield. Plasmid transformation, random mutagenesis and heterologous expression systems have previously been developed for <it>C. cellulolyticum</it>, but targeted mutagenesis has not been reported for this organism, hindering genetic engineering.</p> <p>Results</p> <p>The first targeted gene inactivation system was developed for <it>C. cellulolyticum</it>, based on a mobile group II intron originating from the <it>Lactococcus lactis </it>L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous <smcaps>L</smcaps>-lactate dehydrogenase (<it>Ccel_2485; ldh</it>) and <smcaps>L</smcaps>-malate dehydrogenase (<it>Ccel_0137; mdh</it>) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain, resulting in a substantial shift in fermentation toward ethanol production. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products, corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant's tricarboxylic acid pathway.</p> <p>Conclusions</p> <p>The efficient intron-based gene inactivation system produced the first non-random, targeted mutations in <it>C. cellulolyticum</it>. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in <it>C</it>. <it>cellulolyticum </it>and rapid genetic engineering to significantly alter the mixture of fermentation products. The initial application of this system successfully engineered a strain with high ethanol productivity from cellobiose, cellulose and switchgrass.</p

    A systematic review of cooling for neuroprotection in neonates with hypoxic ischemic encephalopathy – are we there yet?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of this study was to systematically review randomized trials assessing therapeutic hypothermia as a treatment for term neonates with hypoxic ischemic encephalopathy.</p> <p>Methods</p> <p>The Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, CINAHL databases, reference lists of identified studies, and proceedings of the Pediatric Academic Societies were searched in July 2006. Randomized trials assessing the effect of therapeutic hypothermia by either selective head cooling or whole body cooling in term neonates were eligible for inclusion in the meta-analysis. The primary outcome was death or neurodevelopmental disability at ≄ 18 months.</p> <p>Results</p> <p>Five trials involving 552 neonates were included in the analysis. Cooling techniques and the definition and severity of neurodevelopmental disability differed between studies. Overall, there is evidence of a significant effect of therapeutic hypothermia on the primary composite outcome of death or disability (RR: 0.78, 95% CI: 0.66, 0.92, NNT: 8, 95% CI: 5, 20) as well as on the single outcomes of mortality (RR: 0.75, 95% CI: 0.59, 0.96) and neurodevelopmental disability at 18 to 22 months (RR: 0.72, 95% CI: 0.53, 0.98). Adverse effects include benign sinus bradycardia (RR: 7.42, 95% CI: 2.52, 21.87) and thrombocytopenia (RR: 1.47, 95% CI: 1.07, 2.03, NNH: 8) without deleterious consequences.</p> <p>Conclusion</p> <p>In general, therapeutic hypothermia seems to have a beneficial effect on the outcome of term neonates with moderate to severe hypoxic ischemic encephalopathy. Despite the methodological differences between trials, wide confidence intervals, and the lack of follow-up data beyond the second year of life, the consistency of the results is encouraging. Further research is necessary to minimize the uncertainty regarding efficacy and safety of any specific technique of cooling for any specific population.</p

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT
    • 

    corecore