32 research outputs found

    Bartonella quintana coinfection with Mycobacterium avium complex and CMV in an AIDS patient: case presentation

    Get PDF
    BACKGROUND: As a greater number of HIV-infected patients survive despite profound immunodepression due to medical progress, we face complex infection with multiple agents in AIDS-patients. CASE PRESENTATION: We report the case of an AIDS patient with a primary clinical presentation suggestive of bacillary angiomatosis. We also found in cutaneous lesions Mycobacterium avium complex and cytomegalovirus. CONCLUSION: This clinical case illustrates the possibility of multiple coinfections in AIDS patients and the need to be exhaustive in evaluating infectious diseases in severely immunocompromised patients

    Expression profiles of switch-like genes accurately classify tissue and infectious disease phenotypes in model-based classification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Large-scale compilation of gene expression microarray datasets across diverse biological phenotypes provided a means of gathering a priori knowledge in the form of identification and annotation of bimodal genes in the human and mouse genomes. These switch-like genes consist of 15% of known human genes, and are enriched with genes coding for extracellular and membrane proteins. It is of interest to determine the prediction potential of bimodal genes for class discovery in large-scale datasets.</p> <p>Results</p> <p>Use of a model-based clustering algorithm accurately classified more than 400 microarray samples into 19 different tissue types on the basis of bimodal gene expression. Bimodal expression patterns were also highly effective in differentiating between infectious diseases in model-based clustering of microarray data. Supervised classification with feature selection restricted to switch-like genes also recognized tissue specific and infectious disease specific signatures in independent test datasets reserved for validation. Determination of "on" and "off" states of switch-like genes in various tissues and diseases allowed for the identification of activated/deactivated pathways. Activated switch-like genes in neural, skeletal muscle and cardiac muscle tissue tend to have tissue-specific roles. A majority of activated genes in infectious disease are involved in processes related to the immune response.</p> <p>Conclusion</p> <p>Switch-like bimodal gene sets capture genome-wide signatures from microarray data in health and infectious disease. A subset of bimodal genes coding for extracellular and membrane proteins are associated with tissue specificity, indicating a potential role for them as biomarkers provided that expression is altered in the onset of disease. Furthermore, we provide evidence that bimodal genes are involved in temporally and spatially active mechanisms including tissue-specific functions and response of the immune system to invading pathogens.</p

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Interventions to improve the appropriate use of polypharmacy for older people

    Get PDF
    corecore