353 research outputs found

    Strong intracellular signal inactivation produces sharper and more robust signaling from cell membrane to nucleus

    Get PDF
    For a chemical signal to propagate across a cell, it must navigate a tortuous environment involving a variety of organelle barriers. In this work we study mathematical models for a basic chemical signal, the arrival times at the nuclear membrane of proteins that are activated at the cell membrane and diffuse throughout the cytosol. Organelle surfaces within human B cells are reconstructed from soft X-ray tomographic images, and modeled as reflecting barriers to the molecules’ diffusion. We show that signal inactivation sharpens signals, reducing variability in the arrival time at the nuclear membrane. Inactivation can also compensate for an observed slowdown in signal propagation induced by the presence of organelle barriers, leading to arrival times at the nuclear membrane that are comparable to models in which the cytosol is treated as an open, empty region. In the limit of strong signal inactivation this is achieved by filtering out molecules that traverse non-geodesic paths.https://www.biorxiv.org/content/10.1101/2020.01.16.909333v1First author draf

    How Rich is Rich? Placing Constraints on the Abundance of Spinel in the Pink Spinel Anorthosite Lithology on the Moon Through Space Weathering

    Get PDF
    previously unknown lunar rock was recently recognized in the Moon Mineralogy Mapper (M(sup 3)) visible to near-infrared (VNIR) reflectance spectra. The rock type is rich in Mg-Al spinel (approximately 30%) and plagioclase and contains less than 5% mafic silicate minerals (olivine and pyroxene). The identification of this pink spinel anorthosite (PSA) at the Moscoviense basin has sparked new interest in lunar spinel. Pieters et al. suggested that these PSA deposits might be an important component of the lunar crust. However, Mg-Al spinel is rare in the Apollo and meteorite sample collections (only up to a few wt%), and occurs mostly in troctolites and troctolitic cataclastites. In this study, we are conducting a series of experiments (petrologic and space weathering) to investigate whether deposits of spinel identified by remote sensing are in high concentration (e.g. 30%) or whether the concentrations of spinel in these deposits are more like lunar samples, which contain only a few wt%. To examine the possibility of an impact-melt origin for PSA, conducted 1-bar crystallization experiments on rock compositions similar to pink spinel troctolite 65785. The VNIR spectral reflectance analyses of the low-temperature experiments yield absorption features similar to those of the PSA lithology detected at Moscoviense Basin. The experimental run products at these temperatures contain approximately 5 wt% spinel, which suggests that the spinel-rich deposits detected by M(sup 3) might not be as spinel-rich as previously thought. However, the effect of space weathering on spinel is unknown and could significantly alter its spectral properties including potential weakening of its diagnostic 2-micrometers absorption feature. Thus, weathered lunar rocks could contain more spinel than a comparison with the unweathered experimental charges would suggest. In this study, we have initiated space weathering experiments on 1) pure pink spinel, 2) spinel-anorthite mixtures, and 3) the low temperature experimental run products from Gross et al. in order to evaluate the influence of space weathering on the absorption strength of spinel. The results can be used to place constraints on the spinel abundance in the PSA lithology and can be used as ground truth for further VNIR spectral analyzes of lunar lithologies

    Promoting Breast Cancer Screening through Storytelling by Chamorro Cancer Survivors

    Get PDF
    The largest Chamorro population outside of Guam and the Mariana Islands reside in California. Cancer health disparities disproportionally affect Pacific Islander communities, including the Chamorro, and breast cancer is the most common cancer affecting women. To address health concerns such as cancer, Pacific Islander women frequently utilize storytelling to initiate conversations about health and to address sensitive topics such as breast health and cancer. One form of storytelling used in San Diego is a play that conveys the message of breast cancer screening to the community in a culturally and linguistically appropriate way. This play, Nan Nena’s Mammogram, tells the story of an older woman in the community who learns about breast cancer screening from her young niece. The story builds upon the underpinnings of Chamorro culture - family, community, support, and humor - to portray discussing breast health, getting support for breast screening, and visiting the doctor. The story of Nan Nena’s Mammogram reflects the willingness of a few pioneering Chamorro women to use their personal experiences of cancer survivorship to promote screening for others. Through the support of a Chamorro community-based organization, these Chamorro breast cancer survivors have used the success of Nan Nena’s Mammogram to expand their education activities and to form a new cancer survivor organization for Chamorro women in San Diego

    UNBOUND

    Get PDF
    UNBOUND showcases the graduating class from the fashion design school at Fanshawe College. We are pleased to present Unbound 2017! Our 11th Unbound theme embraces the concept of Craft and Machine , a blend of couturier techniques with technology. Unbound describes the creative spirit and achievements of our eighteen emerging Canadian fashion designers. Unbound 2017 is a professional collaboration between Fanshawe College, community and professionals in the fashion industry. As you turn the pages, admire their accomplishments - the results of three years of passion, hard work, and dedication.https://first.fanshawec.ca/famd_design_fashiondesign_unbound/1004/thumbnail.jp

    Mining the surface proteome of tomato (Solanum lycopersicum) fruit for proteins associated with cuticle biogenesis

    Get PDF
    The aerial organs of plants are covered by the cuticle, a polyester matrix of cutin and organic solvent-soluble waxes that is contiguous with the polysaccharide cell wall of the epidermis. The cuticle is an important surface barrier between a plant and its environment, providing protection against desiccation, disease, and pests. However, many aspects of the mechanisms of cuticle biosynthesis, assembly, and restructuring are entirely unknown. To identify candidate proteins with a role in cuticle biogenesis, a surface protein extract was obtained from tomato (Solanum lycopersicum) fruits by dipping in an organic solvent and the constituent proteins were identified by several complementary fractionation strategies and two mass spectrometry techniques. Of the ∼200 proteins that were identified, a subset is potentially involved in the transport, deposition, or modification of the cuticle, such as those with predicted lipid-associated protein domains. These include several lipid-transfer proteins, GDSL-motif lipase/hydrolase family proteins, and an MD-2-related lipid recognition domain-containing protein. The epidermal-specific transcript accumulation of several of these candidates was confirmed by laser-capture microdissection and quantitative reverse transcription-PCR (qRT-PCR), together with their expression during various stages of fruit development. This indicated a complex pattern of cuticle deposition, and models for cuticle biogenesis and restructuring are discussed

    Industry Platforms and Ecosystem Innovation

    Get PDF
    This paper brings together the recent literature on industry platforms and shows how it relates to managing innovation within and outside the firm as well as to dealing with technological and market disruptions and change over time. First, we identify distinct types of platforms. Our analysis of a wide range of industry examples suggests that there are two predominant types of platforms: internal or company-specific platforms, and external or industry-wide platforms. We define internal (company or product) platforms as a set of assets organized in a common structure from which a company can efficiently develop and produce a stream of derivative products. We define external (industry) platforms as products, services, or technologies that act as a foundation upon which external innovators, organized as an innovative business ecosystem, can develop their own complementary products, technologies, or services. Second, we summarize from the literature general propositions on the design, economics, and strategic management of platforms. Third, we review the case of Intel and other examples to illustrate the range of technological, strategic, and business challenges that platform leaders and their competitors face as markets and technologies evolve. Finally, we identify practices associated with effective platform leadership and avenues for future research to deepen our understanding of this important phenomenon and what firms can do to manage platform-related competition and innovation

    Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries

    Get PDF
    The article reviews the current status of a theoretical approach to the problem of the emission of gravitational waves by isolated systems in the context of general relativity. Part A of the article deals with general post-Newtonian sources. The exterior field of the source is investigated by means of a combination of analytic post-Minkowskian and multipolar approximations. The physical observables in the far-zone of the source are described by a specific set of radiative multipole moments. By matching the exterior solution to the metric of the post-Newtonian source in the near-zone we obtain the explicit expressions of the source multipole moments. The relationships between the radiative and source moments involve many non-linear multipole interactions, among them those associated with the tails (and tails-of-tails) of gravitational waves. Part B of the article is devoted to the application to compact binary systems. We present the equations of binary motion, and the associated Lagrangian and Hamiltonian, at the third post-Newtonian (3PN) order beyond the Newtonian acceleration. The gravitational-wave energy flux, taking consistently into account the relativistic corrections in the binary moments as well as the various tail effects, is derived through 3.5PN order with respect to the quadrupole formalism. The binary's orbital phase, whose prior knowledge is crucial for searching and analyzing the signals from inspiralling compact binaries, is deduced from an energy balance argument.Comment: 109 pages, 1 figure; this version is an update of the Living Review article originally published in 2002; available on-line at http://www.livingreviews.org

    Order 10 4 speedup in global linear instability analysis using matrix formation

    Get PDF
    A unified solution framework is presented for one-, two- or three-dimensional complex non-symmetric eigenvalue problems, respectively governing linear modal instability of incompressible fluid flows in rectangular domains having two, one or no homogeneous spatial directions. The solution algorithm is based on subspace iteration in which the spatial discretization matrix is formed, stored and inverted serially. Results delivered by spectral collocation based on the Chebyshev-Gauss-Lobatto (CGL) points and a suite of high-order finite-difference methods comprising the previously employed for this type of work Dispersion-Relation-Preserving (DRP) and Padé finite-difference schemes, as well as the Summationby- parts (SBP) and the new high-order finite-difference scheme of order q (FD-q) have been compared from the point of view of accuracy and efficiency in standard validation cases of temporal local and BiGlobal linear instability. The FD-q method has been found to significantly outperform all other finite difference schemes in solving classic linear local, BiGlobal, and TriGlobal eigenvalue problems, as regards both memory and CPU time requirements. Results shown in the present study disprove the paradigm that spectral methods are superior to finite difference methods in terms of computational cost, at equal accuracy, FD-q spatial discretization delivering a speedup of ð (10 4). Consequently, accurate solutions of the three-dimensional (TriGlobal) eigenvalue problems may be solved on typical desktop computers with modest computational effort

    A comparison of Eulerian and Lagrangian transport and non-linear reaction algorithms

    Get PDF
    When laboratory-measured chemical reaction rates are used in simulations at the field-scale, the models typically overpredict the apparent reaction rates. The discrepancy is primarily due to poorer mixing of chemically distinct waters at the larger scale. As a result, realistic field-scale predictions require accurate simulation of the degree of mixing between fluids. The Lagrangian particle-tracking (PT) method is a now-standard way to simulate the transport of conservative or sorbing solutes. The method’s main advantage is the absence of numerical dispersion (and its artificial mixing) when simulating advection. New algorithms allow particles of different species to interact in nonlinear (e.g., bimolecular) reactions. Therefore, the PT methods hold a promise of more accurate field-scale simulation of reactive transport because they eliminate the masking effects of spurious mixing due to advection errors inherent in grid-based methods. A hypothetical field-scale reaction scenario is constructed and run in PT and Eulerian (finite-volume/finite-difference) simulators. Grid-based advection schemes considered here include 1st- to 3rd-order spatially accurate total-variation-diminishing flux-limiting schemes, both of which are widely used in current transport/reaction codes. A homogeneous velocity field in which the Courant number is everywhere unity, so that the chosen Eulerian methods incur no error when simulating advection, shows that both the Eulerian and PT methods can achieve convergence in the L1 (integrated concentration) norm, but neither shows stricter pointwise convergence. In this specific case with a constant dispersion coefficient and bimolecular reaction A+B¿P, the correct total amount of product is 0.221MA0, where MA0 is the original mass of reactant A. When the Courant number drops, the grid-based simulations can show remarkable errors due to spurious over- and under-mixing. In a heterogeneous velocity field (keeping the same constant and isotropic dispersion), the PT simulations show an increased reaction total from 0.221MA0 to 0.372MA0 due to fluid deformation, while the 1st-order Eulerian simulations using ˜ 106 cells (with a classical grid Peclet number ¿x/aL of 10) have total product of 0.53MA0, or approximately twice as much additional reaction due to advection error. The 3rd-order TVD algorithm fares better, with total product of 0.394MA0, or about 1.14 times the increased reaction total. A very strict requirement on grid Peclet numbers for Eulerian simulations will be required for realistic reactions because of their nonlinear nature. We analytically estimate the magnitude of the effect for the end-member cases of very fast and very slow reactions and show that in either case, the mass produced is proportional to View the MathML source where Pe is the Peclet number. Therefore, extra mass is produced according to View the MathML source where the dispersion includes any numerical dispersion error. We test two PT methods, one that kills particles upon reaction and another that decrements a particle’s mass. For the bimolecular reaction studied here, the computational demands of the particle-killing methods are much smaller than, and the particle-number-preserving algorithm are on par with, the fastest Eulerian methods.Peer ReviewedPostprint (author's final draft
    corecore