9 research outputs found

    Measurement of the (eta c)(1S) production cross-section in proton-proton collisions via the decay (eta c)(1S) -> p(p)over-bar

    Get PDF

    Studies of beauty baryon decays to D0ph− and Λ+ch− final states

    Get PDF

    Monitoring sand particle concentration in multiphase flow using acoustic emission technology

    Get PDF
    Multiphase flow is the simultaneous flow of two or several phases through a system such as a pipe. This common phenomenon can be found in the petroleum and chemical engineering industrial fields. Transport of sand particles in multiphase production has attracted considerable attention given sand production is a common problem especially to the oil and gas industry. The sand production causes loss of pipe wall thickness which can lead to expensive failures and loss of production time. Build-up of sand in the system can result in blockage and further hamper production. Monitoring of multiphase flow is a process that has been established over several decades. This thesis reports an assessment of the application of Acoustic Emission (AE) technology as an alternative online technique to monitoring of sand particles under multiphase flow conditions in a horizontal pipe. The research was conducted on a purpose built test rig with the purpose of establishing a relation between AE activity and sand concentration under different multiphase flow conditions. The investigation consisted of five experimental tests. The initial experiment was performed to provide a basis for the application of AE technology to detect sand particle impact prior to performing tests in multiphase flow conditions. Further investigations are reported on two phase air-sand, water-sand and air- water-sand three-phase flows in a horizontal pipe for different superficial gas velocities (VSG), superficial liquid velocities (VSL) and sand concentrations (SC). The experimental findings clearly showed a correlation exists between AE energy levels and multiphase flow parameters, such as superficial liquid velocity (VSL), superficial gas velocity (VSG), sand concentration and sand minimum transport condition (MTC)

    Effect of Native Oxide Film on Commercial Magnesium Alloys Substrates and Carbonate Conversion Coating Growth and Corrosion Resistance

    Get PDF
    Possible relations between the native oxide film formed spontaneously on the AZ31 and AZ61 magnesium alloy substrates with different surface finish, the chemistry of the outer surface of the conversion coatings that grows after their subsequent immersion on saturated aqueous NaHCO3 solution treatment and the enhancement of corrosion resistance have been studied. The significant increase in the amount of aluminum and carbonate compounds on the surface of the conversion coating formed on the AZ61 substrate in polished condition seems to improve the corrosion resistance in low chloride ion concentration solutions. In contrast, the conversion coatings formed on the AZ31 substrates in polished condition has little effect on their protective properties compared to the respective as-received surfacefinancial support for this work from the Ministry of Economy and Competitivity of Spain (MAT 2009-13530 and MAT2012-30854)We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI)Peer reviewe
    corecore