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Abstract15

Chemical reaction rates measured in field aquifers are typically much lower16

than those measured in the laboratory, primarily due to poorer mixing of17

chemically distinct waters at the larger scale. As a result, realistic field-scale18

predictions require accurate simulation of the degree of mixing between flu-19

ids. The Lagrangian particle-tracking (PT) method is a now-standard way20

to simulate the transport of conservative or sorbing solutes. The method’s21

main advantage is the absence of numerical dispersion (and its artificial mix-22

ing) when simulating advection. New algorithms allow particles of differ-23

ent species to interact in nonlinear (e.g., bimolecular) reactions. Therefore,24

the PT methods hold a promise of more accurate field-scale simulation of25

reactive transport because they eliminate the masking effects of spurious26

mixing due to advection errors inherent in grid-based methods. A hypothet-27

ical field-scale reaction scenario is constructed and run in PT and Eulerian28

(finite-volume/finite-difference) simulators. Grid-based advection schemes29
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considered here include 1st- to 3rd-order spatially accurate total-variation-30

diminishing flux-limiting schemes, both of which are widely used in current31

transport/reaction codes. A homogeneous velocity field in which the Courant32

number is everywhere unity, so that the chosen Eulerian methods incur no33

advection error, shows that both the Eulerian and PT methods can achieve34

convergence in the L1 (integrated concentration) norm, but neither shows35

stricter pointwise convergence. In this specific case with a constant disper-36

sion coefficient and bimolecular reaction A+B → P , the correct total amount37

of product is 0.221MA0, where MA0 is the original mass of reactant A. When38

the Courant number drops, the grid-based simulations can show remarkable39

errors due to spurious over- and under-mixing. In a heterogeneous velocity40

field (keeping the same constant and isotropic dispersion), the PT simula-41

tions show an increased reaction total from 0.221MA0 to 0.372MA0 due to42

fluid deformation, while the 1st-order Eulerian simulations using ≈ 106 cells43

(with a classical grid Peclet number ∆x/αL of 10) have total product of44

0.53MA0, or approximately twice as much additional reaction due to advec-45

tion error. The 3rd-order TVD algorithm fares better, with total product of46

0.394MA0, or about 1.14 times the increased reaction total. A very strict47

requirement on grid Peclet numbers for Eulerian simulations will be required48

for realistic reactions because of their nonlinear nature. We analytically es-49

timate the magnitude of the effect for the end-member cases of very fast50

and very slow reactions. For the bimolecular reaction studied here, the com-51

putational demands of the particle-killing methods are much smaller than,52

and the particle-number-preserving algorithm are on par with, the fastest53

Eulerian methods.54

Keywords: Particle tracking, Chemical reaction, Numerical dispersion,55

Nonlinear amplification56
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1. Introduction58

Chemical reactions occur ubiquitously at a multitude of scales in hy-59

drologic and hydrogeologic environments. A common observation is that60

reactions progress at lower rates at larger scales. Imperfect mixing is an im-61

portant contributor to the various processes that contribute to the scaling62

of reaction rates [38]. Mixing is the fundamental process that brings reac-63

tants into contact with one another and accurate simulations of mixing are64
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key to correctly predicting reactions [36, 37, 47]. Recent studies of mixing65

in heterogeneous hydrologic systems demonstrate that complex rate changes66

can emerge, and simple assumptions about upscaled rates have been shown67

to lack realism [62, 61, 63, 24, 19, 21]. While most of these studies have68

focused on mixing of conservative solutes (and/or instantaneous reactions),69

the results have broad implications for all mixing-driven and rate-limited re-70

actions [36, 37, 24]. Many numerical and experimental studies have shown71

that governing equations or numerical models that do not adequately simu-72

late mixing will also suffer error in ultimately predicting chemical reactions73

[47, 33, 32, 39, 87, 80].74

Many numerical approaches exist for modeling transport of non-reactive75

solutes through heterogeneous porous media. A recent paper [20] focuses76

on five currently popular schemes. Broadly speaking, these authors con-77

clude that, because of spurious numerical dispersion, the grid-based Eulerian78

schemes overestimate dilution/mixing, while Lagrangian approaches, includ-79

ing both random walk particle tracking (RWPT) and Smoothed Particle80

Hydrodynamics (SPH) approaches, given a sufficiently resolved and smooth81

velocity field, are free of numerical dispersion. The authors report that82

SPH is relatively computationally demanding and does not readily han-83

dle anisotropic dispersion [3]. Furthermore, the discrete nature of RWPT84

can lead to discontinuous concentrations, although a variety of novel algo-85

rithms have evolved in recent years to remove such spurious fluctuations86

[44, 78]. While the errors associated with these methods for non-reactive87

solutes are well known, the complicating factor of nonlinear reactions (which88

may amplify these errors), has been recognized but only qualitatively re-89

ported [27]. In this paper, we take a more quantitative look at the difference90

between several widely-used Eulerian (grid-based) and Lagrangian reactive91

transport algorithms. For reactive transport, grid-based methods—including92

finite-element, finite-volume, and finite-difference—continue to largely be the93

norm, although there have been significant recent advances in Lagrangian ap-94

proaches [11, 94, 95, 42, 18]. Here we will focus on classical finite-volume/finite-95

difference Eulerian methods and the purely Lagrangian PT advection-dispersion-96

reaction schemes.97

Regarding the widespread use of grid-based codes, we highlight a few ap-98

proaches and recent studies. More detailed descriptions are given by Steefel99

et al. [91]. While different in their underlying numerical method (finite-100

volume, finite-element, integrated finite-difference, etc.), PFLOTRAN [69],101

TOUGHREACT [106], HYDROGEOCHEM [107], FEHM [110] and NUFT102
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[74] use a 1st-order spatially accurate (O(∆x)) upwind advection scheme (al-103

though NUFT allows an iterative scheme to improve accuracy [89]). The104

TOUGH and TOUGHREACT family of codes is routinely used to simulate105

CO2 injection and reaction [e.g., 75, 2]. Hammond and Lichtner [48] use106

PFLOTRAN to simulate Uranium transport and speciation on the several-107

kilometer scale. Navarre-Sitchler et al. [73] use PFLOTRAN, and Keating108

et al. [56] use FEHM to simulate the release of metals and Uranium, respec-109

tively, from CO2-acidified aquifers. None of these studies specify values for110

dispersivity or diffusivity, so it is likely that the authors rely on numerical111

error, which is a function of discretization and local velocity, to emulate real112

dispersion. Regardless of which code is selected, the effects of realistic disper-113

sion on reaction are often ignored and the fastest and least accurate transport114

algorithm is used [55]. Steefel [90] and White and Oostrom [104] recognize115

the importance of spurious dispersion and mixing (particularly transverse to116

flow) on reactions and implement a 2nd-order accurate variant of Leonard’s117

[65, 31] 3rd-order total-variation-diminishing (TVD) scheme. However, these118

codes use a 1st-order upwind scheme when the simultaneous implicit reaction119

and transport option is chosen. Finally, reaction algorithms (i.e., PHT3D120

[6, 82]) based on transport in the MT3DMS code [109] may choose among121

several advection schemes including 1st and 3rd-order (O(∆x3)) TVD algo-122

rithms. One may also choose a mixed Lagrangian/Eulerian scheme in which123

advection is performed by particles and dispersion/reaction are performed124

on a grid after mapping particle masses back into gridded concentrations125

similar to the scheme by Tompson and Dougherty [97]. It is notable that126

Prommer et al. [82] compare the strictly Eulerian methods to the hybrid La-127

grangian/Eulerian advection/dispersion scheme in MT3DMS and find that128

this Lagrangian/Eulerian scheme is superior to the 3rd-order Eulerian scheme129

in MT3DMS. Those authors recommend the use of particle-tracking for ad-130

vection as a general rule, and a similar conclusion was reached by Herrera131

et al. [51] with their SPH model.132

While more accurate (higher order) grid-based advection schemes have133

been developed (see, e.g., [98]), including the weighted essentially non-oscillatory134

(WENO) and advection-diffusion-reaction (ADER) families of methods, they135

have not been widely adopted in studies of aquifer geochemical reactions.136

One possible reason is the relatively complex nature of these methods, which137

reconstruct (interpolate) the profiles of the advected quantities using nth-138

order polynomials. The polynomials can be analytically advected with (n+139

1)th-order accuracy in 1-d, but the construction process is somewhat compli-140
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cated and a matter of choice. Moving the methods to multi-dimensions is also141

tricky, because maintaining high-order accuracy requires an algorithm that142

looks in all directions (not simply a combination of 1-D sweeps) [98, 68, 67].143

The higher-order polynomial reconstruction can be extended to arbitrary-144

order polynomial basis functions in finite-element implementations [28, 70, 4]145

with analogous results to the WENO finite volume algorithms [e.g., 59]. A146

further complication to many higher-order methods is the potential for neg-147

ative concentration oscillations and/or mass balance errors when spurious148

negative masses are quashed. Another method used to increase accuracy149

uses adaptive grid refinement to decrease grid size in areas of large concen-150

tration gradients (e.g., [105, 30, 72]). These and other efforts to improve151

the efficiency, accuracy, and parallel implementation of Eulerian methods for152

advective flux continue [e.g., 57, 53]. But the situation remains that 1st-153

through 3rd- order accurate, directionally split, upstream weighting is the154

prevailing solution method in aquifer transport and reaction studies; there-155

fore, we investigate these schemes.156

One issue with the various Eulerian implementations in that artificial mix-157

ing is exacerbated by low Courant numbers (low velocities). As a result, the158

artificial dispersion in the transverse, low-velocity direction can be as great as159

either the spurious or real dispersion in the longitudinal direction. This spu-160

rious transverse mixing is responsible for overestimating reactions for many161

boundary value problems [27]. To address this problem, Cirpka et al. [27]162

developed a gridding-along-streamlines approach. In 2-d the streamlines can163

be solved analytically, but in 3-d, particles must be used to trace streamlines164

or streamtubes in the areas of interest. The domain is re-discretized along165

streamlines so that advective fluxes do not cross cells in the transverse direc-166

tion. Solving dispersion and reaction is then either done on the Eulerian grid,167

or the particles used to trace streamlines can be treated via SPH kernels, and168

the problem is reduced to minimizing error in the longitudinal direction. In169

complex flows, however, excess longitudinal dispersion can deplete reactants170

that are rotated and placed into lateral contact, so depending on the configu-171

ration of reactants, longitudinal errors in one location can influence reaction172

errors in another (see, e.g., [35, 64, 43]).173

The various issues with purely Eulerian and mixed Lagrangian/Eulerian174

methods motivated the development of purely Lagrangian transport and re-175

action algorithms. The Lagrangian particle-tracking (PT) method for sim-176

ulating passive scalar transport has several features that have justified their177

continued development and implementation [60, 85, 9]. These include 1)178
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independence of the simulation speed from the underlying velocity (and hy-179

draulic conductivity) discretization, 2) computationally simple representa-180

tion of temporal [12, 84] and/or spatial nonlocality [108], and 3) the lack of181

artificial mixing and negative concentrations. The PT method was extended182

to simulate chemical reactions by calculating the physically-based probabil-183

ity of particle collision and subsequent conditional probability of reaction184

[11, 18]. In this framework, the chemical reactions occur without an explicit185

calculation of concentrations, thus removing the need for interpolation onto186

an Eulerian grid or using SPH kernels for dispersion and reaction calculation187

[e.g. 97, 81, 3], which can reintroduce numerical dispersion and other inter-188

polation errors. Instead, the proximity of particles in the flow field dictate189

the occurrence of reactions. This point highlights a potential advantage of190

the PT method over Eulerian reactive transport models because imperfect191

mixing and chemical spatial heterogeneity are represented by particle num-192

bers and proximities at all scales [76, 77], whereas perfect mixing is assumed193

at some scale in grid-based models. Furthermore, this PT reaction algorithm194

can be derived and applied to experimental data without the need for em-195

pirical parameters such as effective reaction radii or rates, providing a direct196

link to the physical mechanics of chemical reactions [39].197

One of the goals of the work on PT methods is to provide a theoret-198

ical basis for upscaling effective reaction rates in heterogeneous flow fields199

within larger-scale Eulerian codes, based on subgrid fluid deformation met-200

rics [35, 43]. When an incompressible fluid moves through porous media, the201

velocity field influences reactions by deforming a hypothetical fluid parcel.202

Gradients in the velocity field will cause stretching of the fluid parcel in one203

dimension which is accompanied by compression in others. Compression can204

bring fluids of different composition into closer proximity, facilitating mix-205

ing and immediate (or future) reactions. In 3-D, twisting flow and eddy-like206

whirls can significantly add to enhanced mixing by fluid deformation [5, 25].207

Fluid deformation enhances mixing, which cannot be undone [103, 26]. This208

mixing is poorly constrained in many grid-based models, leading to incorrect209

effective reaction rates. The PT reaction theory has been used to estimate the210

increased reaction rates that may accompany any sort of fluid deformation211

[43]. This work parallels similar work that examines Eulerian deformation212

metrics [35, 64] and the similarities may provide a connection between the213

Eulerian and Lagrangian methods for simulating deformation-enhanced re-214

actions. In other words, the PT methods provide a computationally simple215

way to inform larger upscaled grids about the increased reaction rates that216
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are engendered by subgrid fluid deformations.217

However, it remains to be shown the conditions under which the PT and218

Eulerian methods converge to the same solutions for a given boundary value219

problem (BVP). Because mixing-driven reactions can be highly non-linear,220

the simulated mass of the products and reactants may be highly sensitive221

to any transport errors. In this work we construct a few simple problems222

that isolate (and/or eliminate) potential sources of error to investigate the223

supposed similarity of the methods used to simulate a basic set of n coupled224

advection-diffusion-reaction equations (ADRE)225

∂Ci
∂t

= −∇ · (vCi −D∇Ci) +R(C1, C2, ..., Cn); i = 1, ..., n, (1)

where Ci is the concentration of species i, v is the local mean velocity vector,226

D is a dispersion tensor, and R() is a reaction function of all n species.227

We investigate simulation of dispersion using either a constant Dij = Dmδij228

or a velocity-dependent Dij = (|v|αT + Dm)δij + (αL − αT )vivj/|v|, where229

Dm is a diffusion-like constant, αL ≥ αT are longitudinal and transverse230

dispersivities, and δij is the Kronecker delta. The reaction rate is typically231

dictated by the law of mass action, and non-equilibrium rates must often be232

estimated empirically [1].233

In general terms, any grid-based approximation of (1) will incur several234

types of error. Foremost is the difficulty in representing a sharp interface235

with points spaced some distance away from each other in the hyperbolic236

(advection) portion, along with lesser amounts in the parabolic (dispersive)237

portion. Additional error in the reaction term arises by representing the var-238

ious (subgrid) concentration values for each species in a cell by single values.239

Less obvious are errors incurred in the approximation of the velocity vectors240

[10], and error from sequentially solving several components of the equation241

by operator splitting [98]. In any realistic heterogeneous flow field simula-242

tion, the various errors will have different magnitudes in different regions of243

the flow domain because of different velocity magnitudes, orientations rela-244

tive to a grid, and different concentration, velocity, and dispersion coefficient245

gradient magnitudes and orientations.246

On the other hand, the discrete and potentially stochastic nature of the247

PT simulations means that simulation of a deterministic BVP can be nu-248

merically taxing, as an ensemble of simulations is often needed to ascertain249

statistics of the solutions. Moreover, the reactions have been shown to depend250

on the number of particles used: we specify only the positions of particles,251
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so that the initial concentration is approximated by a sum of Dirac delta252

functions. The initial concentration can only be everywhere equal when the253

number of particles goes to infinity. Conversely, smaller numbers of parti-254

cles represent greater heterogeneity in the initial concentration field (in this255

case, greater correlation length of concentration fluctuations [77]). This het-256

erogeneity may increase over the duration of the simulation. Finally, it is257

currently necessary to solve the transport and reactions sequentially, so that258

error is incurred in the operator splitting. Therefore, it is unclear if the PT259

simulations will converge to a “correct” solution for a realistic problem, or if260

a small number of realizations is sufficiently representative of the ensemble261

mean.262

Our goal is to compare various aspects of Eulerian and PT simulations263

of (1). To do so we set up a series of simulations with increasing complexity.264

The first problem considered here is simple 1-d flow aligned along an x-axis in265

a 2-d domain. Diffusion is spatially uniform and isotropic. Reaction is limited266

to a simple (albeit non-linear) irreversible bimolecular system A+B → P , as267

this system has been widely used to analyze reactive transport behavior and268

has been shown to be a fundamental building block of more complex reaction269

chains [45, 46]. The reaction term in Eq. (1) is R(CA, CB) = −kfCACB. For270

ease of visualization, the product P is made immobile. In uniform flow,271

all of the advection algorithms used here can be made free of error, so we272

can isolate diffusion/reaction errors. Following this comparison of PT and273

Eulerian convergence, a more complex heterogeneous velocity field is used to274

check the magnitude of errors introduced by Eulerian approximations of the275

heterogeneous advective fluxes.276

2. Overview of Error in Eulerian Solutions277

A common approach to solving the ADRE (1) on a grid is to use op-278

erator splitting and sequentially solve the advection, diffusion, and reaction279

terms. The many algorithms [e.g., 92, 65, 67, 15] for the hyperbolic advection280

portion are well-known to produce varying degrees of numerical dispersion281

and/or oscillation and overshoot due to the truncation of higher-order space282

and time derivatives in the representation of the variability of the concen-283

tration. We investigate the family of TVD models (including the simplest284

and best known first-difference upwind weighted scheme) with a forward Eu-285

ler time approximation on uniform space-time grids of (∆x,∆t). We choose286

these algorithms because for a Courant number defined in any direction i by287

8



λ = vi∆t/∆xi of unity, the advection term is known to be free of numerical288

dispersion. The Courant number is a measure of how far solute is allowed289

to traverse any grid block, and most grid-based solutions require λ ≤ 1. In290

a heterogeneous flow domain, the Courant number is never uniformly unity,291

and higher-order algorithms that use Courant-based flux limiters are more292

accurate; however, numerical error is never eliminated entirely from the so-293

lution, and these algorithms require more computation time. The benefit is294

a reduction in the number of nodes required to get “equivalent” solutions295

to the lower-order algorithms. As well, many other schemes can be adopted296

to manage the error and computational cost of Eulerian methods including297

adaptive refinement of grids where necessary (e.g., [50]) or more accurate298

timestep interpolation (e.g., [93]). However, there is no consensus on the299

most appropriate algorithm, and solutions based on 1st-, 2nd-, and 3rd-order300

accuracy in space on uniform grids are common.301

Generally speaking, the discretized diffusion operator is thought to be302

sufficiently error-free, relative to any advective error. On the other hand,303

application of the law of mass action for the reaction term assumes perfect304

mixing within any Eulerian block. The effect of subgrid concentration per-305

turbations are not resolved by the numerical method. Recent studies have306

focused on this effect and shown that incomplete mixing effects can be strong,307

leading to significantly altered reaction rates [11, 77, 76, 23, 80] compared to308

those predicted by the assumption of perfect mixing. The non-linear nature309

of the reactions can make the simple act of concentration averaging highly310

variable [e.g., 7, 8, 88]. Newer formulations of the reaction term can account311

for subgrid concentration variability by assuming both a distribution of con-312

centration and a subgrid mixing rate, but this method requires calibration313

with measured reactions at the approprtiate scale (e.g., [23]). In short, the314

“spikier” the unknown subgrid concentration heterogeneity and the more315

nonlinear the reaction, the greater the averaging error that will occur.316

3. Overview of Error in Lagrangian Solutions317

In the PT simulations at hand, the advection of individual particles can318

be made essentially free from error by using Pollock’s algorithm [79]. For the319

explicit Euler approximation we use here, the advection error is negligible as320

long as the velocity field is fairly smooth [10]. The diffusion operator can be321

made arbitrarily accurate in the mean by using motions that solve the correct322

Fokker-Planck equation [60, 9, 85]. For example, if a spatially heterogeneous323
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dispersion equation is being solved, then the motions are generated according324

to an Itô implementation of the nonlinear Langevin equation for Gaussian325

random walks ([60, 85], and see Appendix C). If post-simulation reconstruc-326

tion of the concentration field is required, errors arise with variance related to327

the particle numbers, binning size and smoothing kernels used [e.g., 22, 78].328

A similar problem to the “subgrid” concentration fluctuation is present for329

PT methods, in that a sufficient number of particles must be used to resolve330

the small-scale correlation structure of the concentration fields [39].331

There are several methods for calculating the chemical reactions among332

the particles. Many are based on an on-off (binary) type of reaction cal-333

culation based on the hard-shell particle “radius” model [102, 41]. If two334

particles are located within this radius, then a reaction takes place [42, 49].335

Others are based on a calculation of the probability that two particles will336

be collocated based on dispersion motion [101, 11]. This method is readily337

extended to spatially nonlocal dispersion [e.g., 16]. The co-location proba-338

bility is then multiplied by the conditional probability that two co-located339

particles will react. This latter probability is a simple statement of the ther-340

modynamic reaction rate [46, 54] so the particles are not forced to react (i.e.,341

slow reactions may require multiple co-locations, while fast ones may require342

very few before a reaction actually occurs). In these models, no lattice is343

used, so the separations are real-valued and the probability of collision is not344

binary. This approach can be made arbitrarily accurate without the need for345

empirical parameters [77]. Bolster et al. [18] extend the algorithm by replac-346

ing the probability of conversion with a particle mass-fraction loss. Their347

algorithm gains resolution of low concentrations but has not been rigorously348

tested for convergence to the original particle birth-death algorithm, so we349

partially address this issue here. In particular, the original bimolecular al-350

gorithm of Benson and Meerschaert [11] converts entire reactant A and B351

particles into entire product P particles, so that number of A + P particles352

remains constant in these simulations. However, the lowest possible resolved353

concentrations are O(1/NA), where NA is the original number of A particles.354

Bolster et al. [18] convert portions of each particle’s mass during a reaction,355

so that low concentrations are infinitely resolvable, but: 1) numerically, a356

nearby P particle must be located, or 2) the product mass must be mapped357

to a fixed grid of concentration, given some binning procedure. Here we358

choose the latter with product mass mapped to the nearest square grid.359
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4. Convergence of the Diffusion/Reaction Operations360

Because we later investigate the solutions in heterogeneous 2-d velocity361

fields, we first choose identical 2-d solutions with homogeneous velocity to362

isolate the diffusion/reaction portion of the ADRE. A series of simulations363

was constructed using geologically-relevant parameters for transport and in-364

teraction of two fluids in a 1000 m × 1000 m aquifer domain. Two fluids365

are placed next to each other in 15.6 m strips, separated by an initially366

sharp interface (Fig. 1a). The aquifer has a mean hydraulic conductivity367

K = 1 m/d, a uniform head gradient in the x-direction of 0.01, and a poros-368

ity of 0.3. The fluid velocity is uniform at 1/30 m/d aligned with the x-axis.369

The dispersion is made uniform and isotropic at 0.001 m2/d, representing370

an isotropic local dispersivity of 0.03 m. It is made homogeneous to allow371

comparisons with 1-d analytic models (Appendix B). The fluids are placed at372

mean concentrations of 1 M (molar), and the reaction follows the law of mass373

action R(CA, CB) = −kfCACB with rate coefficient kf = 0.01 (M d)−1. We374

assume unit activity coefficients for simplicity. This rate was chosen so that375

a significant fraction of the reactants (on the order of 20%) will be consumed376

after 10,000 days of transport in the simplest case. Approximate measures377

of the reaction versus transport rates are given by either the advective or378

diffusive Damköhler numbers Dav = kfC0/(v/L) and DaD = kfC0/(D/L
2),379

where L is a characteristic scale of transport. For local-scale Da, we choose380

L ≈ 1m, so for the uniform velocity case, we have Dav ≈ 0.3 and DaD ≈ 10.381

Neither of these numbers point to particularly slow or fast reactions relative382

to transport.383

To compare the grid-based and PT codes, we should choose similar initial384

conditions (ICs). It has been shown that the PT codes inherently represent385

spatial variability in the initial condition and also as the particles diffuse and386

react: the spatial autocovariance decreases with increased particle number.387

Paster et al. [77] show that, for the Dirac-delta function particles that we388

use here, the initial particle number N0 is related to the auto-covariance389

structure of the initial concentrations by N0 = C2
0Astrip/(σ

2
C l
d), where Astrip390

is the area over which the particles are placed, and σ2
C l
d is the d-dimensional391

integral of the covariance function (i.e., the concentration variance times the392

d-dimensional correlation length). The concentration IC becomes smoother393

as the number of particles gets larger. Therefore, for the grid-based codes394

we choose initial concentrations that are deterministically uniform. We also395

uniformly and randomly distribute the particles in the same size strips as in396

11



the Eulerian codes (Fig. 1) and vary the number of particles.397

4.1. L1 convergence398

The Eulerian code was run at different discretizations while holding the399

Courant number λ = 1. The first check of convergence is the integrated mass400

of product after 10,000 days (i.e., the spatial L1 convergence). The Eulerian401

solutions appear to converge in this sense at ∆x ≤ 1 m and a total reaction402

completion of 22.08% (Fig. 2). Because of the 2-d nature of the problem403

and a low-to-intermediate value of Dav ≈ 0.3, we only have an approximate404

analytic solution to this problem (Appendix B.1), so the check of convergence405

is relative stability of the solution at 22.08%.406

Because the initial particle locations and the dispersion motions both have407

random components, the PT simulations are stochastic in nature: each solu-408

tion will give slightly different results. Here we show the mean and standard409

deviations of the integrated mass of product for an ensemble of 20 particle-410

killing simulations (Fig. 2). The non-deterministic nature implies that the411

initial conditions have some inherent randomness that should be constructed412

to represent the actual physical heterogeneity [39]. The number of particles413

encodes the spatial autocorrelation of initial concentrations, and simulations414

with different number of initial particles are supposed to give different re-415

sults. Therefore, our check of convergence follows two tacks: varying the416

number of particles and the time-step size. As the former becomes larger,417

the effective concentration correlation length becomes a smaller fraction of418

the size of the specified initial condition structure (i.e., a better-mixed I.C.)419

and should mimic the homogeneous deterministic initial condition and so-420

lution given by the Eulerian simulations. Indeed, increasing the number of421

particles shows this kind of convergence to a reaction completion of 22.10% in422

the particle-killing simulations (Fig. 2). The inter-simulation variability also423

decreases when the particle density increases, as expected. It appears that424

the converged Eulerian (with ∆x = 0.98 m) and Lagrangian solutions are425

very similar when the initial number of A and B particles is 20,000 (22.05%426

and 21.94% respectively).427

We also checked the solutions when the timestep size was varied, and428

also checked the newer algorithm [18] that does not kill reactant particles429

(instead, the particle masses are allowed to decrease). These simulations are430

more accurate at lower concentrations with the tradeoff of longer simulation431

times. We checked the simulations for initial particle numbers of 10,000432

at different ∆t over a very large range. The means of the particle-killing433
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Figure 1: a) Aquifer domain showing location of initial reactants A (red rectangle) and
B (blue rectangle) for both PT and Eulerian simulations. Also shown are the single-
realization locations of individual particles of product P (black) and reactants A (red)
and B (blue) for initial particle numbers NA(t = 0) = NB(t = 0) = 5, 000. b) Base-
10 logarithm of binned product concentrations (colorbar shows log10(Molar)) from an
ensemble of 10 particle-number preserving [18] simulations, using bin size of ∆x = ∆y = 4
m. The colorbar is scaled to match later plots - it does not show all of the low-concentration
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and particle-preserving algorithms are not statistically significantly different434

at the particle number and timestep resolutions duplicated here (Figure 2435

inset).436

As explained by Paster et al. [77] (and reiterated by Hansen et al. [49]),437

there is a potential for multiple particle collisions during a single timestep438

that may be under-estimated by large ∆t. The neglect of the diminishing439

survival probability should tend to over-estimate reactions for too large a440

∆t. On the other hand, too small a timestep reduces the area “probed”441

by a particle and reduces the number of potential reaction partners, until,442

as ∆t → 0, only the nearest neighbors are allowed to react. So too small443

a timestep should tend to underestimate reaction rates. The correct ∆t444

lies between a lower value dictated by the average particle density and an445

upper number dictated by several stability criteria. We may bracket the446

timestep size by the ratio of the effective search radius for a particle pair447

undergoing diffusion to average particle spacing 0.25 < 2
√

8Dm∆t/∆x <448

1.5 [77]. The factor 8 in the square root differs from pure diffusion and449

comes from the convolution of two Gaussians representing the co-location450

probability (Appendix C). The initial condition area Astrip over the particle451

number of one species NA(t) gives a first-order approximation of inter-particle452

spacing. In the simulations at hand, Dm = 0.001m2/d, and average inter-453

particle distance Astrip/NA(t = 0) ≈ 0.78m, so 1.2d < ∆t < 340d. Varying454

the timestep over a wide range shows that the solutions have an inflection455

point between too little and too much reaction at the point surrounding the456

smaller of the two values (Fig. 2 inset). From approximately ∆t ≤ 10, the457

mean product concentrations are not significantly different, so in general we458

recommend setting ∆t < 0.16∆x2/Dm.459

4.2. Pointwise (L∞) convergence460

Because the Eulerian simulations are deterministic, we may also look461

at the shapes of the product distributions to assess qualitatively the point-462

wise convergence (Fig. 3). The peak concentrations in the 1st-order upwind463

simulations continue to rise significantly over the range of discretizations464

tested (the finest discretization model comprised over 4 million cells), so465

that pointwise convergence was not seen in these simulations. Similar, but466

lower magnitude, issues were seen in simulations using 2nd- and 3rd-order467

TVD simulations (Appendix A). If maximum concentrations are a concern468

to the user, a finer discretization will be required than one derived (later in469

this paper) for accuracy in the L1 norm.470
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In the PT simulations, the concentrations are only created by binning471

the particles, hence the concentrations will be functions of bin size and any472

kernels used to model the spatial influence of particles (see, e.g., Fig. 1b). In473

an effort to compare to the Eulerian results, the mean concentrations along474

the centerline of the product plume for ensembles of simulations are compared475

(Fig. 4). The concentrations are simple sums of particle masses in square476

cells of size ∆x = 4 m. A similar effect in the PT relative to the Eulerian477

simulations is found when the number of initial particles increases: more478

particles tend to resolve higher peak mean concentrations. The effect is not479

enhanced a great deal by the choice of bin size; however, bigger bins will tend480

to smooth out the higher peak concentrations (Fig. 4). Furthermore, those481

PT simulations that have total masses of product similar to the Eulerian482

simulations (for example, 20,000 particles corresponding to ∆x = 0.98 m)483

also have similar mean peak concentrations. It should be noted that there484

is considerable variability in the binned product concentrations from the485

particle-killing algorithm along the plume direction. For example, at the peak486

location in the 50,000 particle, 256 bin simulation, the product concentrations487

had a standard deviation of approximately 0.0065 M (compared to the mean488

concentration of 0.037 M).489

5. Eulerian Velocity Error490

The spatial approximation using 1st-order upwind advection scheme used491

here has a known numerical dispersion of magnitude |v|∆x
2

(1−λ) [66]. A simi-492

lar magnitude error is incurred by the forward Euler time-stepping, so the the493

total error is of order |v|∆x(1−λ). Here we investigate 1) the combined effect494

of changing both ∆x and λ in a simple homogeneous velocity field and 2) the495

effect of spatially variable λ in a more realistic heterogeneous field. We also496

implement a 3rd-order TVD and the particle-number-preserving Lagrangian497

algorithms on the same velocity fields.498

5.1. Homogeneous Velocity499

For the homogeneous velocity case, the Courant number λ was varied500

between 0.1 and unity for three levels of discretization (∆x = 0.49, 0.98,501

and 1.95). The reacted masses at 10,000 days increased, in some cases502

dramatically, at all λ < 1 (Fig. 5) due to spurious numerical dispersion503

and erroneous mixing, particularly in the 1st-order upwind algorithm. The504

amount of product doubled or tripled at the lowest Courant numbers and505
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highest Peclet numbers. In Appendix B we demonstrate semi-analytically506

how changes in dispersion coefficient might affect the total mass of product507

produced. The total mass of product produced, for either fast or slow bi-508

molecular reactions, scales approximately as
√
D, meaning that any errors in509

D, arising from numerical dispersion, can result in significantly larger masses510

of product. For 1st-order, explicit forward Euler solutions, the numerical dis-511

persion has a maximum on the order |v|∆x so the the grid Peclet number512

(Pg = vmax∆x/D) is a measure of the ratio of spurious to real dispersion.513

For velocity-dependent dispersion this reduces to Pg ≈ ∆x/αL. A value of514

Pg = 2 means that real and spurious dispersion are of the same order, and515

excess product on the order of
√

2 times the correct amount is produced.516

In general, the maximum amount of error is approximately
√

1 + Pg/2 − 1,517

so that obtaining 5% mass error from a 1st-order accurate algorithm would518

require Pg ≈ 0.2.519

The 3rd-order TVD scheme appears to give reasonable reaction totals (in520

the integrated L1 sense) over a large range of λ for ∆x ≤ 0.5m , which521

corresponds to a classical ∆x/αL ≤ 16. Note that for the particle tracking522

schemes the results with advection are identical to those without advection523

presented in the previous section due to the principle of Galilean invariance524

(i.e., a uniform advection merely shifts all particle locations, but does not525

change their relative distance from one another, which is all that is required526

for reaction).527

The peak concentrations in these Eulerian simulations were also tracked,528

and at all discretizations there were substantial errors introduced by the529

advection approximations (Fig. 6). Although not shown here, the 3rd-order530

advection algorithm converged to less than 5% error in this L∞ sense at about531

∆x = 0.1m, while at this smallest discretization (representing Pg = 4) the 1st-532

order had peak concentrations approximately 50% too high. Also noticeable533

in these plots is the error due to the diffusion and reaction operators at a534

Courant number of unity. These numbers correspond to the different peak535

concentrations shown in Fig. 3.536

5.2. Spatially Variable Velocity537

A random fractal K field with anisotropic-, or operator-scaling, was gen-538

erated using Fourier filter methods [13]. Operator-scaling in this context539

means that transects of the K field are fractional Brownian motions with540

different Hurst coefficients in the x- and y-directions of 0.44 and 0.36 (with541

uniform weighting on the axes) so that there is greater correlation of the542
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underlying Gaussian increments in the x-direction (Fig. 7). The geomet-543

ric mean K is 1 m/d to match the uniform velocity field in the previous544

section. The porosity is set to 0.3 and the mean hydraulic gradient to 0.01.545

The K and steady-state velocity fields were calculated using a block-centered546

scheme at a uniform discretization of ∆x = ∆y = 0.98 m. To illustrate the547

general features of the velocity field, a line of uniformly-spaced inert par-548

ticles was placed along a transect at the initial A/B reactant interface at549

x = 256 m (Fig. 8) and tracked at 1000-day intervals (with a blue line550

joining initially adjacent particles). The lines and particles allow a rough551

estimation of the local components of fluid deformation, including shear and552

dilation/compression transverse to the mean flow direction. Because of the553

divergence-free (incompressible) flow, any dilation in the flow direction must554

be accompanied by compression in the orthogonal direction and vice-versa555

[35, 43].556

5.2.1. Isotropic, Spatially Constant Dispersion557

Fluid deformation, including shear, can put reactants into closer prox-558

imity and increase reaction rates [43], as verified visually by the locations559

of generated product particles (mapped to log10(concentration) on a grid of560

0.98× 0.98 m cells) in a 40,000-particle simulation (Fig. 9d). The regions of561

high deformation, as indicated by stretching and/or shearing flowlines, are562

expected to be regions of extremely high or hyper-mixing [17, 35]. Indeed563

they tend to be heavily populated with product particles (Fig. 9d). The to-564

tal amount of product, i.e., the completion of the reaction after 10,000 days,565

is 37.4% in this simulation, or roughly 70% greater than the total amount of566

product (22.1%) in the homogeneous domain, all other factors being equal.567

This increase is due entirely to fluid deformation. An ensemble mean of 10568

simulations shows the same features (Fig. 9c), demonstrating that the strong569

zonation of reaction intensity is not an artifact of random variations between570

realizations.571

The Eulerian solutions have unphysical negative concentrations spread572

throughout the lower-concentration regions, so only concentrations greater573

than 10−20 are shown here. A 1st-order Eulerian simulation with the same574

velocity field and parameters with ∆x = ∆y = 0.98 m (or a domain of575

1024×1024 ≈ 106 nodes) gives a total amount of product of 53%, or roughly576

double the increase seen in the PT simulations going from homogeneous to577

the heterogeneous velocity fields (Fig. 9a). This overestimation is consistent578

with the overestimations by the Eulerian simulators in a homogeneous do-579
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main for smaller Courant numbers (Fig. 5). Calculated velocities in the het-580

erogeneous domain spanned over three orders-of-magnitude; therefore, the581

local Courant numbers go from essentially zero to unity across the entire582

domain (Fig. 8). The numerical dispersion in both the longitudinal and583

transverse directions (because flow is seldom exactly parallel to the x-axis584

in the heterogeneous flow field) leads to substantial overestimation of the585

spatial extent of reaction in both high and low velocity zones (Fig. 9a). The586

1st-order Eulerian method does not resolve the fine “threading” of reaction587

that takes place in areas of high fluid deformation.588

The 3rd-order TVD method is visually better at restricting spurious lat-589

eral dispersion and preserving structure within the plume (Fig. 9b), and has590

an integrated product concentration closer to the PT simulations (at 39.4%).591

For this algorithm, another level of grid refinement (at a cost of 8 times the592

computation time, addressed in a subsequest section) would be necessary593

for the simulation to adequately match the PT results. For the first-order594

algorithm, the values of ∆x and ∆t would need to be reduced to bring the595

grid Peclet numbers substantially below unity to reduce numerical mixing to596

less than the real mixing (see Appendix B). In the example used here, on597

the order of 1 to 100 billion cells would be required, which is far outside the598

computational resources available to us.599

5.2.2. Anisotropic, Velocity-Dependent Dispersion600

All of the transport and reaction algorithms are straightforward to ex-601

tend to velocity-dependent and anisotropic dispersion (??). The dispersion602

coefficient (and local dispersivity) at this scale represent subgrid velocities603

that are not resolved and are a function of flow field variability. Because604

we are not following the assumptions of low velocity variability and finite605

and fixed correlation lengths, there are no analytic expressions for effective606

block dispersivity [34]. Instead we use a common assumption that sub-grid607

dispersion is some fraction of the size of the block (the size at which velocity608

is resolved). Here we chose αL = 0.1∆x, where ∆x was held at 0.98 m based609

on the resolution of the velocities. The timestep size was chosen to maintain610

λ = 1 at the highest velocity (which is constant for the Eulerian simulations611

but may change based on the highest velocity experienced at any time by612

the particles).613

Due to the lower values of dispersion in low-velocity areas (compared to614

the previous example with D = 0.001m
2

d
I), the particle-number-preserving615

PT simulations have lower integrated reaction product of 29.4% relative to616
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Figure 9: Base-10 logarithms of simulated product concentrations at 10,000 days using
constant D = 0.001m2/d: a) (Eulerian) first-order upwind, b) (Eulerian) third-order
TVD, c) Ensemble average of particle-preserving PT, and d) Single realization from (c).
Colorbars denotes Molar product concentration. Eulerian simulations have large areas of
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the 37.4% in the isotropic D case (Figs. 11 c and d).617

For the 1st-order upwind simulations, the common block-size based dis-618

persivity choice gives Pg = 10. This simulation is very similar, both vi-619

sually and quantitatively, to the previous isotropic D simulation (compare620

Figs. 9a and 11a). Each 1st-order simulation indicates reaction completion621

at about 50% — neither can resolve the subtle differences in the formulation622

of dispersion. The mixing is dominated by error. The 3rd-order simulation623

over-estimates the reactions by several percent (at 33.8%), consistent with624

the isotropic dispersion and homogeneous velocity cases. However, for both625

Eulerian simulations, spurious over-mixing in the source area, combined with626

excess transverse dispersion, depletes the reactants far downstream so that627

the peak concentrations modeled at the exit area of the aquifer are roughly628

3 to 10 times lower than in the PT simulations (compare exit zones in Figs.629

11a-d).630

A clear feature of the more accurate PT and 3rd-order simulations is the631

high degree of variability and structure of the product distribution in space632

(Figs. 11b-d). There is more structure in this simulation than the isotropic633

D case because of the lower values of transverse dispersion, which limits mix-634

ing where the reactant interface has been sheared or folded. A comparison of635

cross-sections of the product concentrations in the middle of the plume (Figs.636

12 a-b) shows that the ensemble mean PT and 3rd-order simulations are in637

agreement, but that a single realization, which represents a potential path-638

way of an initially heterogeneous plume, has substantially greater variability.639

Even at a mean transport distance of ≈ 250, some product concentrations640

are 100 times different within ≈ 5 meters of each other. The peaks and641

valleys are co-located in the single realization and ensemble plumes, but the642

combination of fluid deformation and perturbed concentrations in the initial643

conditions are amplified by the nonlinear reaction. The first-order Eulerian644

simulation is a poor indicator of reaction heterogeneity.645

5.3. Computation time646

For a consistent means of comparing computation times, all of the codes647

were implemented in Matlab on a laptop machine with a 2.7 GHz Intel Core648

i7 processor and 8GB of 1333 MHz DDR3 RAM (and OSX 10.9.5 operat-649

ing system). As long as there is enough RAM space, a table of execution650

times (Fig. 13) verifies that the Eulerian codes require a minimum time651

T ≈ K1∆xd+1 + K2, where T is execution time [s], d is the number of di-652

mensions (d = 2 here), K1 is a constant that depends on the number of653
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Figure 11: Base-10 logarithms of simulated product concentrations at 10,000 days using
velocity-dependent D with αL = 0.1m: a) (Eulerian) first-order upwind, b) (Eulerian)
third-order TVD, c) Ensemble average of particle-preserving PT, and d) Single realization
from (c). Colorbars denotes Molar product concentration. Eulerian simulations have
negative concentrations, so plots only show concentrations above 10−20 M.
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executions per node, and K2 [s] is a small overhead term that accounts for654

one-time processes such as initialization of arrays. For the homogeneous655

velocity case, the maximum Courant number of unity forces a minimum ex-656

ecution time with K1 ≈ 175 and 285 for 1st- and 3rd-order algorithms. The657

latter takes about 60% longer to run, all things held constant. The PT658

simulations are somewhat harder to quantify in the homogeneous velocity659

case, because there is no Courant number stability restriction. The particle-660

killing algorithm is more efficient in general, and for a range of values of661

∆t, it is clear that the computation time increases linearly with 1/∆t (Fig.662

14). The particle-killing algortithm also scales approximately linearly with663

the initial number of particles (N), while the particle-number-preserving al-664

gorithm scales about linearly with small N but appears to scale with the665

(constant-in-time) number of particles to the 1.2 to 1.6th power for larger666

numbers (Fig. 14). This is due to the larger number of particles within some667

constant search radius given as a multiple of
√

8D∆t. For the same reason,668

for large particle numbers, decreasing ∆t does not cause a linear slowdown669

of the particle-preserving method (see the converging computation times for670

∆t = 50 and 10 s in Fig. 14). In other words, because the search becomes671

more efficient when the search radius decreases, the cost is lessened when the672

timestep is made smaller. Comparing the PT methods to Eulerian, it is clear673

that single realizations of either PT method takes less time than the stable674

Eulerian methods. Also, achieving better results in the Eulerian methods675

by grid refinement is much more taxing than adding particles or changing676

timestep size in the PT methods.677

In the heterogeneous velocity fields, the Eulerian methods still scale with678

T ∝ ∆x3 in 2-d, but there is an additional penalty of about 20× due to the679

higher maximum velocity in the field. The PT methods also run slower in680

the heterogeneous fields, but the penalty is only about 1.3× to 5× because681

the Courant number of unity applies to the fastest particle, not the fastest682

velocity anywhere in the domain. Because the velocity distribution is highly683

skewed (Fig B.3), the maximum particle velocity is far less than the maxi-684

mum domain velocity most of the time. Additionally, the number of particles685

is a modeler’s choice dictated by the heterogeneity of the initial conditions.686

Similarly, the choice of is not as restrictive as in the grid-based methods,687

so that simulation times for the PT method can be reduced without caus-688

ing numerically unstable conditions (unlike the Courant requirement of the689

Eulerian models). In theory, Pollock’s method can be used analytically in690

steady flow and semi-analytically in transient flow to determine a particle’s691
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advected position over any time interval [79, 71], so the chosen timestep is692

limited by the diffusion and reaction steps.693

The reaction step also leads to a particle number stability constraint that694

arises when dispersion is small: For the particle-number preserving method,695

the relative change of a particle’s mass when reacting with another particle696

is maximized when two particles (subscripts 1 and 2) are coincident, and697

then in 2-d, dm1/m1 = kfm2/(4π
√
det(D)) (see [18]). The values dm1/m1698

should be less than unity, so this can be checked at the start of a simulation699

when m2 is largest, and det(D) is checked at its smallest location. Then the700

number of particles is increased until m2 is a small enough number.701

6. Conclusions702

The ADRE (1) can be approximated by grid-based or PT algorithms.703

When the advection error is completely eliminated in homogeneous flow con-704

ditions, the diffusion and reaction portion of both Eulerian and PT methods705

converge in an L1 sense to a “correct” solution. Neither method shows a ten-706

dency to converge in a pointwise sense given the limitations of desktop-scale707

computational resources: as ∆x is made smaller or the number of particles708

made larger, the peak concentrations in the domain tend to rise. This point709

was not exhaustively investigated but has implications for studies concerned710

with maximum concentrations within a domain.711

As expected, the errors associated with the approximation of advection712

dominate the behavior of the grid-based simulations. For displacement of713

one reactant with another starting with square pulse initial conditions, the714

errors in a classical 1st-order upwind method are remarkably large. The715

nonlinear interaction of reactants means that this algorithm would need grid716

Peclet numbers far less than unity to achieve reasonable solutions in terms of717

integrated product (i.e., total effective reaction rate). Higher-order methods718

can have spurious over- or under-mixing, depending on the algorithm and719

shapes of reactant plumes (Appendix A). The 3rd-order algorithm offers720

potentially the best balance for current Eulerian methods in use, and appears721

to require classical grid Peclet numbers ∆x/αL . 10 for visually acceptable722

results in heterogeneous velocity fields. The additional computational cost723

of the 3rd-order method over simple upwind weighting is about 60%, which is724

certainly justified for the additional accuracy. Quantitatively, when moving725

from homogeneous to heterogeneous velocities (all other things held equal726

with a constant D) the 3rd-order algorithm produced too much product by727
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about 2% percent (going from 22.1% to 39.4%) relative to PT methods (from728

22.1% to 37.3%). This increased reaction due to fluid deformation (17.3%729

versus 15.2%) is too great by a factor of 1.14. The grid-based advection error730

has several interesting effects, including increased volume of reaction, large731

areas of negative concentrations, and depletion of reactants so that product732

cannot be formed farther downstream.733

The PT methods, whether particle-killing or preserving, have very sim-734

ilar amounts of product produced realization to realization, although the735

peaks and valleys within single realizations are more pronounced due to the736

interplay of fluid deformation and concentration fluctuations. Computation-737

ally, the particle-killing PT method is, in general, much faster than the grid-738

based methods for comparable conditions. The particle-preserving algorithm739

is also faster, but not drastically so, compared to the Eulerian methods. The740

particle-preserving method is more accurate than any of the studied algo-741

rithms, particularly at lower concentrations, and requires fewer realizations742

to get an estimate of the ensemble average. If initial conditions are known ex-743

actly and deterministically, only one Eulerian run is required, so an advantage744

is found there. It is impossible to directly compare computation times for Eu-745

lerian and PT methods, but the former scales with ∆xd+1, and the latter with746

N/∆t (particle-killing) to N1/∆t to N1.7/∆t (particle-preserving). A new747

criterion for timestep size 0.25 < 2
√

(8Dm∆t)(N(t)/A) < 3/2 is proposed748

(for 2-d), assuming isotropic diffusion. Time steps falling within this range749

permit enough diffusion to allow sufficiently high collision probabilities while750

limiting long range, diffusive jumps for a given particle. Additionally, we find751

that the particle-preserving methods requires that 1 > kfmp/(4π
√
det(D)),752

where mp is the initial particle mass.753

Because of the lack of advection error and favorable computation times,754

the PT method can be used to examine the subtle changes to local reaction755

rates that arise in heterogeneous flow fields along with spatially heteroge-756

neous chemical distributions. At present, the particle methods have only757

been extended to relatively simple reaction chains (e.g., Michaelis-Menton758

[40]). Based on the advantages of the PT methods, an examination of fur-759

ther extensions is warranted.760

Appendix A. Review of Finite-Difference Schemes761

In multiple dimensions, there are several finite volume/finite difference762

algorithms for scalar transport (see, e.g., [98]). An attractive component of763
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several schemes is the TVD requirement, which eliminates spurious oscilla-764

tions and is a “single-pass” method. The TVD schemes can be applied in765

single sequential 1-d sweeps by spatial operator splitting. However, these766

schemes are 1st-order at best [98]. Other schemes can increase the order767

of convergence accuracy with varying degrees of computational overhead,768

such as stricter, smaller Courant number criteria, or predictor-corrector type769

formulations. Toro (2009) provides an excellent overview [98]. Here, for ex-770

position, we choose the TVD methods and show their optimal behavior in771

1-d.772

For concentrations q, the wave equation qt = −v ·qx has an Euler approxi-773

mation at the ith location and the nth timestep of qni = qi− (∆t/∆x)(fi+1/2−774

fi−1/2), where f are the fluxes at cell faces. The lack of superscript im-775

plies values from the previous (n − 1) timestep. In the simplest case of776

uniform positive velocity in 1-d and constant ∆x, this simplifies to qni =777

qi − (v∆t/∆x)(qi+1/2 − qi−1/2). A first-order upwind or “donor-cell” scheme778

uses qi−1/2 = qi−1. Higher-order methods adjust the flux at a cell face to779

represent the change in concentration over a timestep. This can be derived780

in several ways [66, 67], including higher-order estimates of the concentration781

derivatives or predictor-corrector techniques generally referred to as flux cor-782

rected transport (FCT) (applications to hydrology problems include [52, 27]).783

We will not investigate the FCT methods here, focusing instead on the ef-784

ficient one-step TVD methods. The second-order methods use a (linear)785

estimate of the slope Si of the concentration in an upwind cell that leads to a786

change of flux over the timestep. Then integrating the linear change of con-787

centration over a timestep gives a new estimate of the upwind concentration788

qi−1/2 = qi−1 + Si−1(∆x− v∆t)/2 (A.1)

= qi−1 + Si−1∆x(1− λ)/2 (A.2)

A natural choice of slope Si−1 = (qi − qi−1)/∆x gives the Lax-Wendroff789

scheme. These calculated slopes will be discontinuous and can lead to over-790

shoot and oscillation, so the amount of allowable flux can be limited according791

to the values of neighboring slopes. If discontinuities are found, the slopes792

are adjusted. Replacing Si−1∆x in the last equation (A.1) with a general793

function and the difference in the two surrounding known concentrations794

φ(ri−1/2)(qi − qi−1) gives the flux-limited form795

qi−1/2 = qi−1 +
(1− λ)

2
φ(ri−1/2)(qi − qi−1) (A.3)
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where ri−1/2 = (qi−1 − qi−2)/(qi − qi−1) is a ratio of upstream and down-796

stream gradients relative to the donor cell i − 1. Generalizations to vari-797

able velocity magnitude and direction are straightforward. For reference,798

the Lax-Wendroff 2nd-order formula sets φ(r) = 1 and leads to overshoot799

and oscillation. Various schemes have been developed based on eliminat-800

ing spurious fluctuations. A common method requires that the total vari-801

ation of q, given for example by
∫
|dq/dx|dx, must not increase. Given802

this constraint of total variation diminishment (TVD), and keeping the re-803

quirement that the solution be second-order accurate, Sweby [92] showed804

that the allowable values of φ(r) must lie in the shaded area of Figure805

A.1. Schemes that follow the bottom of the region are the most diffusive;806

schemes along the top are least (and can be compressive, leading to overly807

steep shock fronts). The four limiters shown on the plot—Roe’s superbee,808

(see [92]), Van Leer [100], minmod [83], and Leonard’s 3rd-order [65, 31]809

—are chosen here to represent the range of behaviors. The first-order up-810

wind scheme uses φ(r) = 0 and can obviously be coded without looking at811

three nodal concentrations per face and is faster. The 3rd-order solution ad-812

justs the form of φ(r) based on the local value of λ (Fig. A.1) according to813

φ(r, λ) = max[0,min{min(2, 2r), 1
3
((2− λ) + (1 + λ)r)}].814

For an illustration of the effects of the TVD schemes, the ADRE was815

coded in 1-d using operator splitting. Parameters were held the same as in816

Section 4. The number of grid blocks was held at 512, or 1/4 the maximum817

number used in Section 4, roughly representing equivalent computational818

effort. For the square-pulse initial condition specified (Fig. 1), the least dif-819

fusive flux limiter (superbee) is clearly most accurate over the full range of820

Courant numbers tested (Fig. A.2). Based on this plot, one might assume821

that the superbee limiter is best; however, its compressive (anti-diffusive)822

nature is well suited to discontinuous concentrations. Smoother fields are823

artificially sharpened. To illustrate, a similar initial condition is specified in824

which equal, but Gaussian-shaped masses of reactants A and B are placed825

near each other (Fig. A.3). The total product masses are lower at λ = 1826

because the centers of A and B mass are farther apart, but it is clear that the827

superbee limiter is under-predicting the overlap and mixing of the plumes at828

later times (Fig. A.4). In fact, the reaction for λ = 0.1 has nearly ceased829

at the end of the simulation (not shown). Clearly, there is no optimal ad-830

vection scheme for all types of plumes or mixtures of Courant numbers that831

will be found in a heterogeneous flow field. It is also important to note832

that extending the higher-order TVD methods to multiple dimensions is not833
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straightforward. Typically, the higher-order methods are applied sequentially834

in 1-d sweeps via directional operator-splitting. LeVeque [67] notes that any835

method that is TVD in 2-d is, at most, 1st-order accurate, although some836

multi-dimensional techniques appear to maintain higher-order accuracy in837

simultaneous multi-dimensional calculations (e.g., [96, 29]). Performing se-838

quential 1-d sweeps through a multi-dimensional domain is presently the839

best technique used in water resource applications (especially within readily-840

available codes), even though that method does not explicitly account for841

cross-derivatives that naturally come up in the addition of the higher-order842

anti-diffusion.843

Appendix B. Semi-Analytical Solutions for Mass of Product Pro-844

duced845

Solutions are tractable under two end-member conditions: fast and slow846

reactions.847

Appendix B.1. Slow Reaction - A Perturbation Solution Approach848

In 1-d the ADRE (1) is given by849

∂Ci
∂t

+ u
∂Ci
∂x

= D
∂2Ci
∂x2

− kCACB i = A,B (B.1)

This equation can be rewritten in dimensionless forms by defining dimension-850

less variables t∗ = tu
l
, x∗ = x/l, and C∗ = C/Cref , where l is a characteristic851

distance (e.g., the initial width of the plume in our simulations) and Cref852

is a characteristic concentration (e.g., the initial concentration). For ease of853

notation we drop the stars and in dimensionless form (B.1) becomes854

∂Ci
∂t

+
∂Ci
∂x

=
1

Pe

∂2Ci
∂x2

−DaCACB i = A,B (B.2)

where Pe = ul
D

is the Peclet number and Da = kC0l
u

the Damköhler number.855

We are considering the limit of slow reactions and thus take Da as small.856

Doing this we can write the following expansion for concentration [99]:857

Ci =
∞∑
n=0

C
(n)
i Dan (B.3)

Then at O(Da0)858
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∂C
(0)
i

∂t
+
∂C

(0)
i

∂x
=

1

Pe

∂2C
(0)
i

∂x2
i = A,B (B.4)

Recognizing that the effect of advection is just a Gallilean shift, we move859

into a moving reference frame z = x− t and860

∂C
(0)
i

∂t
=

1

Pe

∂2C
(0)
i

∂z2
i = A,B (B.5)

In an infinite domain the solution to these equations is given by861

C
(0)
i =

√
Pe

4πt

∫ ∞
−∞

e
−(z−ξ)2Pe

4t Ci(t = 0)dξ (B.6)

At O(Da1)862

∂C
(1)
i

∂t
=

1

Pe

∂2C
(1)
i

∂z2
− C(0)

A C
(0)
B i = A,B (B.7)

Given this equation and truncating series (B.3) for concentrations at O(Da1)863

the total mass of the product will be given by864

M(t) = Da

∫ ∞
−∞

∫ t

0

C
(0)
A (z, t′)C

(0)
B (z, t′)dt′dz (B.8)

Thus in principle for any initial condition we can now calculate the pro-865

duced mass to within approximation of the perturbation series. Any error866

introduced via numerical dispersion will manifest as an error in the concentra-867

tion fields C
(0)
A (z, t′) and C

(0)
B (z, t′) via a modified Pe = (ul)/(D+Dnumerical),868

which will compound in an error in the resultant product mass.869

The nonlinear and initial condition specific nature of the reaction makes870

it difficult to make general statements on how this error will manifest. For871

demonstration purposes, consider the following simple example, an infinite872

domain half filled with A and half filled with B, separated by a sharp interface873

at x = 0. At short times (i.e., when the diffusive length is much less than874

the initial plume width) this mimics the example setups studied in this work.875

For this setup the initial conditions are given by876

CA(t = 0) = 1 −∞ < x < 0

CB(t = 0) = 1 0 < x <∞ (B.9)
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and zero elsewhere, which means877

C
(0)
A (z, t) =

1

2
erfc

[
z
√
Pe√
4t

]
C

(0)
B (z, t) = 1− 1

2
erfc

[
z
√
Pe√
4t

]
(B.10)

Thus solving (B.8) is trivial and gives878

M(t) =
2

3
Da

√
2

πPe
t3/2 (B.11)

The key feature is that M(t) ∝ 1√
Pe

, or in dimensional terms that the879

mass or product produced is proportional to
√
D. Given that in the Eulerian880

numerical models the dispersion coefficient will be D = Dactual + Dnumerical,881

any error in the dispersion coefficient induced by numerical dispersion will882

increase the predicted amount of mass produced in this manner. The results883

for the specific initial conditions studied in this paper are cumbersome and884

provide little insight and are thus not shown. However, to leading order it885

can be shown that the initial condition studied in this paper has the same886

scaling.887

Appendix B.2. Fast Reactions888

Now if we consider the other extreme when Da is large, we can treat the889

reaction as instantaneous, which in previous studies has been shown to be a890

good assumption for Da > 10 [86]. Under this assumption A and B cannot891

coexist, meaning that the lesser will be consumed entirely. Now following the892

development of Gramling et al. (2002) [47], define two conservative pseudo-893

tracers as894

UA = CA + CP UB = CB + CP (B.12)

These are governed by a conservative transport equation because upon895

summation of the ADREs (1) for CA and CP , the reaction terms disappear896

(because A and B disappear at the same rate as P by stoichiometry). For897

the initial conditions considered in B.1898

UA(t = 0) = 1 −∞ < x < 0

UB(t = 0) = 1 0 < x <∞ (B.13)
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which means that at all times899

UA(t) =
1

2
erfc

[
(x− ut)

√
Pe√

4t

]
UB(t) = 1− 1

2
erfc

[
(x− ut)

√
Pe√

4t

]
(B.14)

Now since A and B cannot coexist, the concentration of product is given by900

CP = min(UA, UB) (B.15)

and the total mass of product for the semi-infinite sources (following [47]) is901

given by902

M =

∫ ∞
−∞

CPdx = 2

∫ ∞
0

UAdx = 2

√
t

Peπ
(B.16)

A more accurate equation for the finite (in the x-direction) sources is903

MC(t) =

√
4t

πPe

(
1− e−Pe4t

)
+ 1− erf

[√
Pe

4t

]
(B.17)

which recovers (B.16) for l → ∞. The 20,000 particle simulations follow904

formula (B.17) fairly closely at later time (Fig. B.1) using the intial condition905

l = 15.6 m for an estimation of the scaling length. The early time discrepancy906

is most likely due to the fact that our reactions are not instantaneous, but907

take some time (albeit small) to develop.908

Appendix B.3. Slow reactions generalized to a higher order reaction −kCn
AC

m
B909

To demonstrate how these effect might be influenced for higher order910

reactions, consider taking r = −kCn
AC

m
B . Following the same procedures as911

above for slow reactions (i.e. Appendix B.1) the total mass produced will be912

M(t) =

∫ t

0

∫ ∞
−∞

Da
Pe

n+m
2

(4πt′)
n+m

2

n∏
i=1

∫ 0

−∞
e
−(x−ξi)

2Pe

4t′ dξi

m∏
j=1

∫ ∞
0

e
−(x−ηi)

2Pe

4t′ dηjdxdt
′

(B.18)

Now rescale all the length scales by
√

Pe
4t′

, i.e.913

ξ′ = ξ

√
Pe

4t′
η′ = η

√
Pe

4t′
x = x

√
Pe

4t′
(B.19)
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Figure B.1: Evolution of the mass of product in the 20,000 particle simulations in a
homogeneous velocity field (symbols), along with the solution to the analytical expression
(B.17).
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Figure B.2: Analytic solutions (using (B.17)) for mass created at 10,000 days incorporating
the errors due to numerical dispersion for the upwind scheme.
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Then914

M(t) =

∫ t

0

∫ ∞
−∞

Da

√
4t′

Pe

1

π
n+m

2

n∏
i=1

∫ 0

−∞
e−(x−ξi)2dξi

m∏
j=1

∫ ∞
0

e−(x−ηi)2dηjdxdt
′

(B.20)
which gives915

M(t) = W
2Da

3

√
2

Pe
t3/2 (B.21)

where the constant W is given by916

W =
1

π
n+m

2

∫ ∞
−∞

n∏
i=1

∫ 0

−∞
e−(x−ξi)2dξi

m∏
j=1

∫ ∞
0

e−(x−ηi)2dηjdx (B.22)

The specific value of W is unimportant to the central message. From917

(B.21) we see again that the total amount of mass produced has the same918

proportionality as before of M(t) ∝ 1√
Pe

. At this point it is not clear how to919

generalize the fast reactions scenario to higher order reactions.920

Appendix B.4. Error Estimates921

The foregoing sections of this Appendix show that the mass produced is922

roughly proportional to
√
D. This allows the construction of some rules-of-923

thumb for error estimation. The ratio of mass produced with numerical error924

to mass produced without error is
√
Dactual +Dnumerical/

√
Dactual. Therefore925

the excess amount of mass produced in error expressed as a fraction of the926

real amount is Error =
√

1 +Dnumerical/Dactual − 1. For isotropic, fixed927

Dactual in our first-order upwind scheme, we have928

Error =

√
1 +

|v|∆x
2Dactual

(1− |v|∆t/∆x)− 1 (B.23)

In the case of velocity-dependent dispersion in which the longitudinal disper-929

sion is given by Dactual = αL|v|, the error is930

Error =

√
1 +

∆x

2αL
(1− |v|∆t/∆x)− 1 (B.24)
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Figure B.3: Histogram (blue bars) of velocity magnitude in the heterogeneous domain
pictured in Fig 8. Estimates of the excess mass production error (red curves) by the upwind
advection algorithm as a function of velocty (hence grid Peclet and Courant numbers) for
fixed dispersion value 0.001 m2/d and a velocity-dependent dispersion with αL = 0.03 m.
The right-hand labels are for excess error as a multiple of the real production value.

The latter of these two errors is greater for regions of smaller velocity in931

the domain, as the former goes to zero for |v| → 0. Figure B.3 shows the932

magnitude of these two error estimates for reasonable values in the exam-933

ple heterogeneous domain (∆x = 1 m, max(v) = 1.46 m/d), along with934

a histogram of the velocities within the (log-normal) K field. For a large935

portion of the domain experiencing low velocity, the error is greater for a936

velocity-dependent dispersion.937

Appendix C. PT simulation of anisotropic dispersion and reaction.938

We solve (1) via PT using operator-splitting as follows: The finite-time939

discretized Langevin equation applied to each particle’s position X for the940

backward Kolmogorov transport portion of equation (1) follows Xt+∆t =941

49



Xt + (v + ∇D)∆t + BW , where B =
√

2∆tD after D is diagonalized942

by rotation into a coordinate system along the flow direction, and W is a943

standard multiGaussian random vector [60].944

The velocities are calculated at cell faces following an iterative solution of945

the continuity equation for constant-density fluid ∇ ·K∇h = 0 followed by946

v = −K∇h/θ. Constant values of h at the left and right boundaries, along947

with no-flow ∇h · n = 0 along the top and bottom boundaries maintain948

the desired mean gradient from left to right. The K is constant within949

each rectilinear volume (cell), porosity θ is constant everywhere, and v is950

calculated at cell faces and linearly interpolated to each particle’s location951

within the cells. Dispersion components for each particle use these linearly-952

interpolated velocities. Because the calculation of the gradients of dispersion953

coefficients at the exact particle location are relatively time consuming by954

bilinear interpolation (see [60]), we make a simplification that the gradients955

can be well approximated as constant within each cell. This follows directly956

from the linear velocity interpolation and linear dispersion dependence on957

velocity. For example, in 2-d with indices i, j in the x, y-directions, the958

components Dxx and Dyx are calculated at the i − 1/2 and i + 1/2 faces,959

while Dyy and Dxy are calculated at the j − 1/2 and j + 1/2 faces. So for960

the i, j block, dDxx
dx

= (Dxx(i + 1/2) − Dxx(i − 1/2))/∆x, dDyx
dx

= (Dyx(i +961

1/2)−Dyx(i− 1/2))/∆x, dDyy
dy

= (Dyy(j + 1/2)−Dyy(j − 1/2))/∆y, dDxy
dy

=962

(Dxy(j + 1/2)−Dxy(j − 1/2))/∆y.963

In the operator-split method, we enforce zero-diffusive flux BCs in the964

random walk by reflecting all particles back into the domain [e.g., 85]. Par-965

ticles that move by advection into boundary cells are removed, enforcing966

J = n · vC, where n is the unit normal to the boundary and the relation of967

concentration to particle mass is thought of as the spatial convolution of any968

particle’s mass with some kernel function with unit integral in d-dimensions.969

A nice discussion of all types of boundary conditions for advection and dis-970

persion via the PT method is given by Koch and Nowak [58].971

Reactions between particles may either follow the formulas given in [11]972

or [18] for particle-killing or particle-preserving methods, respectively. For973

the latter, each A particle with unique mass mA(t) at time t is chosen974

and sequentially subjected to reaction with nearby B particles with unique975

mass mB. The change in masses for a single reaction are dmA = dmB =976

−∆tkfmB(t)mA(t)v(s). Then the net change sums over all reaction partner977

pairs mA(t + ∆t) = mA(t) +
∑
dmA. The co-location density v(s) given a978
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separation vector s between an A and B particle pair is given by a multi-979

Gaussian980

v(s) =
1

(8π∆t)d/2|D|1/2 exp(− 1

8∆t
s′D−1s). (C.1)

The search radius for nearby particles was restricted to 3
√

8 max(Dij)∆t, and981

the kd-tree algorithm [14] for nearby particle searching was used as coded in982

the “rangesearch” algorithm in matlab.983

We assume, for calculation speed, that the dispersion tensor is simply that984

of the “central” A particle. The differences in dispersion tensors between the985

A and each nearby B particle was ignored, i.e., D = DA. For isotropic986

dispersion, the above procedure was used with D = DI.987
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