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A B S T R A C T 

A unified solution framework is presented for one-, two- or three-dimensional complex non-symmetric 
eigenvalue problems, respectively governing linear modal instability of incompressible fluid flows in 
rectangular domains having two, one or no homogeneous spatial directions. The solution algorithm is 
based on subspace iteration in which the spatial discretization matrix is formed, stored and inverted seri­
ally. Results delivered by spectral collocation based on the Chebyshev-Gauss-Lobatto (CGL) points and a 
suite of high-order finite-difference methods comprising the previously employed for this type of work 
Dispersion-Relation-Preserving (DRP) and Pade finite-difference schemes, as well as the Summation-
by-parts (SBP) and the new high-order finite-difference scheme of order q (FD-q) have been compared 
from the point of view of accuracy and efficiency in standard validation cases of temporal local and 
BiGlobal linear instability. The FD-q method has been found to significantly outperform all other finite 
difference schemes in solving classic linear local, BiGlobal, and TriGlobal eigenvalue problems, as regards 
both memory and CPU time requirements. Results shown in the present study disprove the paradigm that 
spectral methods are superior to finite difference methods in terms of computational cost, at equal accu­
racy, FD-q spatial discretization delivering a speedup of 0(10''). Consequently, accurate solutions of the 
three-dimensional (TriGlobal) eigenvalue problems may be solved on typical desktop computers with 
modest computational effort. 

1. Introduction 

The present contribution focuses on the application of high-or­
der finite-difference methods to the numerical solution of partial-
derivative eigenvalue problems (EVP) which govern global linear 
flow instability. The term global instability is used here to collec­
tively describe instability in domains in which the number of 
homogeneous spatial directions is one or zero, respectively corre­
sponding to two- and three-dimensional EVP. Global linear insta­
bility analysis is motivated by the need to unravel the origins of 
laminar-turbulent transition in flows over or through complex 
geometries; the theory has advanced into a field of vigorous re­
search activity in the last decade [1]. This endeavor has been facil­
itated by the wider availability of computational resources 
commensurate with the solution of the multi-dimensional eigen­
value and singular value decomposition problems underlying the 
theory. While non-modal studies of instability of complex flows 
have commenced appearing in the literature in recent years [e.g. 
2,3], the overwhelming majority of work is performed in a modal 
context, governed by the solution of large-scale eigenvalue prob­
lems. Their solution entails two aspects, spatial discretization 
and eigenspectrum computation, which are briefly reviewed next. 
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Regarding spatial discretizations for global instability analysis, 
the early flow applications analyzed involved simple two-dimen­
sional domains in which the numerical discretization techniques 
employed were straightforward extensions of those used in the 
solution of classic one-dimensional linear stability eigenvalue 
problems. The pioneering studies of inviscid instability of a vortex 
by Pierrehumbert [4], viscous instability analyses in the wake of 
the circular cylinder by Zebib [5] and the rectangular duct by Tats-
umi and Yoshimura [6] fall in this category; all three works em­
ployed spectral methods for the spatial discretization of the 
linearized operator. Almost simultaneously, finite-element meth­
ods were also used for the solution of the two-dimensional EVP 
by Jackson [7] and Morzyiiski and Thiele [8], while finite-volume 
methods soon followed [9]. Although finite-element or finite-vol­
ume methods are not restricted to the single-domain two-dimen­
sional grids employed in the early spectral analyses, their low 
formal order of accuracy needs to be compensated in terms of grid 
density: should sharp gradients need to be resolved, as the case is 
with the amplitude functions of global eigenmodes at increasingly 
high Reynolds numbers, one resorts to using unstructured meshes 
of ever-increasing density in order to achieve convergence [e.g. 10]. 
In doing so, one effectively trades off the efficiency of a high-order 
method in favor of the flexibility offered by the unstructured mesh 
discretization. The case is thus set for high-order accurate, flexible 
and efficient numerical methods in order to solve the BiGlobal EVP. 
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Such an approach has been introduced in the seminal work of 
three-dimensional instability in the wake of a circular cylinder 
by Barkley and Henderson [11,12] in the form of spectral-element 
discretization on structured meshes. The first application of a spec-
tral/hp-element method [13] to the study of a global instability 
problem on unstructured meshes was that of Theofilis et al. [14], 
who recovered instability in the wake of a NACA0012 airfoil as 
the leading BiGlobal eigenmode of the steady wake flow. 

Regarding eigenspectrum computations, early analyses relied 
on full eigenspectrum computation [15,5], which scales as ©(M^) 
and 0{M^) with regard to memory and CPU time requirements, 
respectively, if a total number of M degrees of freedom are used 
for the spatial discretization of the linearized operator. Both esti­
mates present a severe limitation for full eigenspectrum computa­
tions in both two and three simultaneously discretized spatial 
directions. Access to the entire eigenspectrum of global eigenvalue 
problems is thus routinely sacrificed in present-day global instabil­
ity analysis algorithms, which employ some form of subspace iter­
ation to recover a small subset of the eigenspectrum. This practice 
is justified since, from a physical point of view only a relatively 
small part of the leading perturbations, those close to the origin, 
is relevant to flow instability. On the other hand access to the 
smallest eigenvalues implies inversion of the discretized linear 
operator; a common practice to avoid inversion, the cost of which 
is also 0{M'^) and 0{M^) if a direct dense method is used, is to emu­
late the action of the inverse operator during the subspace crea­
tion, without ever forming or inverting the operator. Well-
established practices in the latter context, collectively referred to 
as time-stepping methods, have been introduced by Eriksson and 
Rizzi [16] and Edwards et al. [17] and are in use in modern global 
instability analyses, such as the three-dimensional global instabil­
ity analyses ofTezukaand Suzuki [18] and Bagheriet al. [19], or the 
modal and non-modal work of Blackburn et al. [20]. 

Nevertheless, it may be argued that forming the matrix has cer­
tain advantages over time-stepping, the main ones being simplicity 
in the formation of the global eigenvalue or singular value prob­
lem, and flexibility in extending the analysis into regimes that 
would require the availability of entirely different flow solvers, if 
the time-stepping approach were to be used. When the matrix is 
formed, it is straightforward to include in the same code compress­
ibility effects in subsonic or supersonic flow, extend the analysis 
into the hypersonic regime by implementing a few additional 
terms in an otherwise unchanged algorithm, or include new phys­
ics, such as non-Newtonian dynamics or magnetohydrodynamics, 
all by appropriately modifying the linearized operator. The penalty 
to be paid is of course the need to store and operate large matrices 
which, as the resolution requirements increase, can quickly be 
unmanageable in all but the largest supercomputers. 

For a given spatial discretization method within a matrix form­
ing context, straightforward serial (see [21] and Supplemental 
Appendix 3 of [ 1 ] for an overview), as well as parallel computations 
(ranging from a modest number of processors [22] up to massively 
parallel EVP solutions [23-26]) have been used for the recovery of 
(part of) the global eigenspectrum. A key efficiency improvement 
was proposed by Crouch et al. [22] who first employed sparse di­
rect solvers for this class of problems. In order to exploit the ben­
efits of using sparse solvers. Merle et al. [27] compared Fade [28] 
and Dispersion-Relation-Preserving [29] high-order finite-differ­
ence spatial discretization schemes to the solution of the incom­
pressible BiGlobal EVP and concluded that from a combined 
accuracy and efficiency perspective the DRP schemes offer the best 
alternative for the solution of this global EVP. 

The present contribution revisits the numerical solution of the 
EVP arising in global linear stability theory using matrix formation 
and spatial discretization of the spatial operator by means of the 
previously employed Pade compact [28] and Dispersion-

Relation-Preserving [29] schemes, as well as standard high-order 
finite differences, Summation-By-Parts operators [30,31], and the 
less-known very high order finite difference schemes of Hermanns 
and Hernandez [32]. All results are compared against those deliv­
ered by the spectral collocation method based on (standard and 
coordinate-transformed) Chebyshev Gauss-Lobatto grids. 
Although the main focus of the present work is global instability 
analysis in two or three inhomogeneous spatial directions, the 
one-dimensional EVP governing local flow stability is also solved, 
since its well-known highly accurate results assist quantification 
of the error associated with each spatial discretization method. 
The potential of the most accurate finite-difference method identi­
fied to permit transient growth analyses [33] is demonstrated also 
in this local linear stability limit. For the sake of quantifying errors 
in the numerical solution of the two- and three-dimensional global 
linear stability eigenvalue problem, solution of the Helmholtz 
equation in two and three spatial dimensions is also presented 
using the spatial discretization methods discussed earlier since, 
on the one hand analytically-known solutions exist for the Helm­
holtz EVP and on the other hand the Laplacian operator in two 
and three spatial dimensions is a key element in the construction 
of the respective BiGlobal and TriGlobal eigenvalue problems. 

Section 2 exposes an introduction to some aspects of modal lin­
ear stability theory and the one, two- and three-dimensional sta­
bility problems solved in this paper. In Section 3, the high-order 
spatial discretization methods discussed earlier are briefly de­
scribed. Their application to the numerical solution of the one-, 
two- and three-dimensional eigenvalue problems governing 
incompressible fluid flow stability is discussed in terms of accuracy 
and computational efficiency in Sections 4 and 5 respectively. Con­
clusions are offered in Section 6. 

2. Modal linear stability theory 

Hydrodynamic instability studies the behaviour of a laminar 
flow field, upon the introduction of small-amplitude perturbations, 
in order to improve the understanding of the processes involved in 
the onset of unsteadiness in moderate-Reynolds-number flows and 
the transition of laminar flow to a turbulent regime. 

The vector of fluid variables q = [u,p]^ is decomposed into a 
steady base flow Q. = [U,P]^ and an unsteady small disturbance 
or perturbation sq, with s < 1 and q = [u,p]^: 

q(x,t)=(i(x) + eq(x,t). m 
Once this decomposition is assumed, solutions to the initial-value-
problem 

^ = C{Re,Q.)q, (2) 

are sought. Specific comments on the dependence of these quanti­
ties on the spatial coordinates, x, and time, f, will be made in what 
follows. The operator C is associated with the spatial discretization 
of the linearized Navier Stokes equations (LNSE) of motion and 
comprise the base state, Q,(x), and its spatial derivatives. In case 
of steady base flows, the separability between time and space coor­
dinates in (2) permits introducing a Fourier decomposition in time. 

q(x, t) = q(x) 0(x, t), 0 = 9{x) exp(-icot) (3) 

with 6(x) a spatial phase function, which depends on the number of 
homogeneous directions of the problem, leading to the generalized 
matrix eigenvalue problem: 

Aq = coBq. (4) 

Here matrices A and B discretize the operator C, with B being 
singular due to the continuity equation. The sought complex 



eigenvalue is m = cOr + ica,, the real part being a circular frequency, 
while the imaginary part being the temporal amplification/damping 
rate; and q(x;f) = (u,p)^ is the vector comprising the amplitude 
functions of linear velocity-component and pressure perturbations. 

2A. Local instability: one-dimensional LNSE 

Throughout the largest part of last century, additional assump­
tions have been made to the base flow and the disturbances in or­
der to make the problem solvable, the strongest of which was 
adopting the so-called parallel-flow assumption. The base flow is 
assumed to be homogeneous in two out of the three spatial direc­
tions, here x and z, and comprises components 

(i= [U,0,W,PY(y), 
such that the coefficients of the resulting eigenvalue problem are x 
and z independent. Modal perturbations then get the form 

q(x,y,z, t) = qly) exp[i(ax + fSz- mt)], (6) 

where the periodicity lengths Lx = 2n/a and Lz = In/p are imposed 
to the disturbances' shapes in the x and z directions respectively. 

Upon substitution of Eq. (6) into the LNSE, the operators A and 
B defining (4) become: 
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where A D = iaU +i/? W- i ( r> j , j , - a^ - /?^) , Vy being the first 
derivative matrix and Vyy the second derivative matrix respect to 
y direction. 

2.2. BiGlobal instability analysis: two-dimensional LNSE 

Assuming that the base flow is now dependent on two out of 
the three spatial coordinates 

( i = [U,V,W,Py{x,y), (8) 

the coefficients of the LNSE are z independent, and modal perturba­
tions now get the form 

q(x,y,z, t) = q(x,y) exp[i(^z - mt)]. (9) 

The disturbances are still three-dimensional, but a sinusoidal 
dependence is assumed only in the homogeneous z direction, with 
the periodicity length L^ = In/p. Upon substitution of Eq. (9) into 
the LNSE, the PDE-based GEVP operators are 
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where £20 = UVy + VVy + \fiW -^^ (©„ + Vyy - f), V^ being the 
first derivative matrix and Vxx the second derivative matrix respect 
to X direction. 

2.3. TriGlobal instability analysis: three-dimensional LNSE 

Without any restriction to the base flow, it depends on the three 
spatial directions 

Q_= [U,V,W,PY{x,y,z), 

and modal perturbations get the form 

q(x,y,z, t) = q(x,y,z)exp[-cot] , 

( H ) 

(12) 

using the redefinition im ^ m in order to deal with a real problem. 
Upon substitution of Eq. (12) into the LNSE, the operators A and 

B of Eq. (4) define a PDE-based problem in real arithmetic: 
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where £30 = UVx + Wy + WV^ - jfe ( » « + Vyy + ©^z), »z being the 
first derivative matrix and V^z the second derivative matrix respect 
to z direction. 

(5) 2.4. The multidimensional Helmholtz eigenvalue problem 

Turning to the main theme of the paper, solution of multi­
dimensional eigenvalue problems arising in global flow instability, 
attention will be paid to the accurate recovery of analytically 
known results of the Poisson operator, the Helmholtz eigenvalue 
problem, which is at the heart of the elliptic part of the linearized 
Navier-Stokes equations governing instability in both two and 
three spatial dimensions: 

A(j)- 0, (14) 

where i^ is the sought real eigenvalue and can be determined ana­
lytically for simple geometries [34]. This problem is also recovered 
by simplification from the linearized Euler equations, neglecting 
flow velocity altogether and keeping only the pressure. 

2.5. Boundary conditions 

The elliptic eigenvalue problem (4) must be complemented 
with adequate boundary conditions for the disturbance variables. 
In the presence of solid walls, no-slip condition is implemented, 
and far from the wall all disturbances decay to zero. Boundary con­
ditions for the disturbance pressure do not exist physically; instead 
on the boundaries, compatibility conditions are used derived from 
the Navier-Stokes equations at the boundary of the domain (see 
[35]). 

3. Numerical methods and eigenvalue computation for matrix 
formation 

In this Section the different spatial discretization methods for 
matrix formation used to solve global instability problems are pre­
sented. The eigenvalue computation to solve these problems is de­
scribed in order to clarify the computational process followed in 
this paper. 

3.1. Spatial discretization 

The spatial discretization plays a very important role in matrix 
storing and forming approach for solving eigenvalue problems. In 
this Subsection different accurate numerical methods for matrix 
formation approach are briefly described. Special attention is de­
voted to the new high order finite difference methods developed 
by Hermanns and Hernandez [32], since it is employed here for 
the first t ime in the global instability field. 

3.1.1. Dispersion-relation-preserving finite difference schemes 
The main objective of Dispersion Relation Preserving (DRP) fi­

nite difference schemes is to present an optimized high order finite 
difference scheme which minimizes dispersion wave errors. There­
fore, this scheme supports not only consistency, stability and con-



vergence but also wave solutions with the same characteristics as 
the linearized Euler equations in the case of small amplitude 
waves. The methodology is briefly introduced in this paper and is 
explained more in detail by Tam and Webb in [29]. 

Considering the model wave equation 

du du 

and using the spatial discretization on a uniform grid spacing Ax, 
the next expression gives the first order spatial derivative at the no­
dal point /: 

1 
Ax 

I^OjUf+j, 
i=-N 

where the finite difference coefficients a, need to be determined. 
Additionally to the fulfillment of the classical finite difference rela­
tions among the coefficients a, to ensure a certain order of conver­
gence, the DRP methods impose conditions based on the 
minimization of the integrated error E, defined by the Euclidean 
norm. 

ir/2 

-11/2 
|aAx- aAx| d(aAx), (17) 

where a is the physical wavenumber and a is the effective wave 
number of the finite difference approximation obtained from apply­
ing a spatial Fourier transformation to Eq. (16). This additional con­
dition seeks to improve the spectral resolution capabilities of the 
explicit finite difference method [29]. 

The procedure to calculate second derivatives is similar to the 
one explained before. These coefficients are presented in Appendix 
A for a finite difference scheme of order 8. 

Following the methodology employed in Merle et al. [36] the 
boundary formulation employed for the first and second derivative 
is a standard finite difference scheme. However, in this case the or­
der of the boundary formulations are of the same order than the in­
ner finite difference scheme. Such difference is necessary in order 
to get the proper slope of the relative error curves that preserve 
the order of the method. 

3.1.2. Compact finite difference schemes 
The implicit scheme or compact finite difference scheme de­

scribed in [28] is briefly presented next. These schemes are gener­
alizations of the Fade schemes. The considered mesh is again a 
regular one with a constant grid spacing Ax. The generalizations 
for the first and second derivatives have the following form: 

'j+2 

Ji+i -fj-3 ^ i^fj+2 -fj-2 ^ Jj+-[ -fj--[ 
6Ax 4Ax 2Ax 

Pfi-2 + o/i-l +fi' + 0^+1 + Pf^ 'j+2 

fj+3-2fj+fj-3 , Jj+2-2fj+fj-2 , J 'J+1 

9Ax2 4Ax2 
-2fi+fi-i 
Ax2 

(18) 

(19) 

The coefficients employed to solve the system are presented in B 
and can be found in [28]. 

Following the methodology employed in [37] the boundary for­
mulation employed for the first and second derivative is a finite 
difference compact scheme with smaller order than the inner 
scheme. However, in the present case the order of the boundary 
formulations are of the same order than the inner finite difference 
scheme. Such difference is necessary in order to get the proper 
slope of the relative error curves that preserves the order of the 
method. 

3.1.3. Summation-by-Parts operators for finite difference 
approximations 

Summation-by-Parts (SBP) operators can be used to construct 
time-stable high-order accurate finite-difference schemes as a dis­
cretization of the integration by parts formula. In this paper the ba­
sic idea of method construction is presented, which is explained 
more in detail in [30,31,38]. 

Considering the hyperbolic scalar equation Ut + Ux = 0, integra­
tion by parts can be expressed as 

' ' i , I , 

dtll"ll 
-{U,Ux) - {Ux,U) • (20) 

(16) where (u, v) is the standard L^ inner product on [a, b] and 
||u||^ = (u, u) is the associated L^ norm. Considering the approxima­
tion of the equation Vc + 'DxV = 0, being v the discrete counter part 
of u, a difference operator Vx = H"' Q is an SBP operator if 
Q. + QJ = B, where B = d!ag(-l, 0, . . . , 0,1). The procedure to calcu­
late second derivatives is following as well a discretization of the 
integration by parts formula similar to the one explained before. 
The coefficients employed to perform first and second derivative 
for a finite difference scheme of order 8 can be found in [31 ]. 

3.1.4. Finite difference methods with uniform error, FD-q 
The here called FD-q method developed by Hermanns and Her­

nandez [32] is a new high order finite difference method employed 
to solve global instability problems for the first time in this paper. 
Therefore, more attention is paid in the description of this numer­
ical method. The idea behind FD-q is to construct a non-uniform fi­
nite difference scheme based on the philosophy behind Chebyshev 
Gauss-Lobatto collocation points which minimize interpolation 
errors. 

The approach followed for the derivation of the finite difference 
approximations is briefly presented in the following section. See 
the work by Hermanns and Hernandez [32] for in-depth details 
of the presented method as well as its application to time evolution 
problems. 

In order to derive the finite difference approximations to the 
spatial derivatives of a general function u(x, t), a piecewise polyno­
mial interpolant is constructed that matches the discrete values 
Ui{t) of the function u{x,t) at the grid nodes x,, and whose deriva­
tives are then computed to obtain the sought finite difference for­
mulas. Fig. 1 represents such a piecewise polynomial interpolant 
formed out of individual polynomial interpolants /,(x) which are 
only valid in their respective domains of validity f2,. Each of these 
domains f2, includes the corresponding grid node x, and their union 
is equal to the whole domain [-1,+1] of the problem. 

Given a set of grid nodes, the expressions for/,(x) can readily be 
obtained through the Lagrange interpolation formulae [39,40]: 

m = J2^ij{x)uj, «̂w- n J^f^ 
m = 0 ^' x„+„ 

Si + mj^i 

(21) 

where q is the polynomial degree and the seed s, is the index of the 
left most node x, involved in the construction of the interpolant 
/,(x). For the case of even polynomial degrees, which is the choice 
from now on, the following selection of values for s, is made: 

{Si} = {0 , . . . ,0 ,0 ,1 , 
g/2 times ce 

,N-q,N-q,...,N-q}. (22) 

g/2 times 

The piecewise polynomial interpolant represented in Fig. 1 corre­
sponds to the case of q = 6 and N = 10. As can be seen from the 
represented stencils of the individual interpolants, sufficiently far 
away from the boundaries, the above selection of seeds leads to 
centered finite difference formulas, whereas close to the boundaries 



; Centered stencils 

s, = 0 

s,=4 
s,=4 

Fig. 1. Stencils, seeds Si, and domains of validity Qi of the individual polynomial interpolants /i(x) of a piecewise polynomial interpolation of degree q = 6 on 11 nodes 
{N = 10). The dashed box separates the centered stencils from those affected by the presence of the boundaries. 

the stencils are biased towards the center of the domain in order to 
only make use of existing grid nodes. 

It should be noted, that in virtue of the uniqueness of the inter­
polating polynomials, the finite difference formulas obtained from 
the differentiation of the piecewise polynomial interpolant intro­
duced above coincide with the ones obtained by classical means. 
Thus, no differences compared to conventional finite difference 
methods on arbitrary grids exist, only the way in which they are 
formulated and derived, but not in the end result. 

In the above definition of the piecewise polynomial interpolant 
the choice of grid nodes x, has been left open so far. However, by 
their proper selection it is possible to make the interpolation error 
of the piecewise polynomial interpolant to be uniform across the 
interval [-! ,+!]. The result is a non-uniform grid that is unique 
for each pair of values of q and N. This same idea underlies the 
Chebyshev interpolation, where the condition that the interpola­
tion error is uniform across the interval [-!,+!] is also imposed, 
but this time on a single polynomial interpolant instead [41,42]. 
The result is also a non-uniform grid, known as the Chebyshev 
roots or Chebyshev-Gauss quadrature points, that is unique for 
each value of N. Both approaches achieve the same result, namely 
the suppression of the Runge phenomenon that spoils the accuracy 
of high order polynomial interpolations close to the ends of the 
interpolation interval. 

In Fig. 2 the resulting grid spacings Ax, = x,+] - x, for the piece-
wise polynomial interpolant and for the Chebyshev interpolant are 
shown for different cases, both of them normalized with the uni­
form grid spacing Ax, Eq = 2/N. The details of the algorithm for 
the derivation of the former one can be found in [32], while the 
derivation of the Chebyshev grids can be found in any classical 
textbook on spectral collocation methods or interpolation theory 
[40-42]. The case q = 6 and N = 10 from Fig. 1 is shown in 
Fig. 2(a), where it can be seen that the proposed non-uniform grid 
for the piecewise polynomial interpolant lies in between the uni­
form grid and the Chebyshev grid. 

Very enlightening are the following limiting cases: (i) q^N 
and (n) q = N. In the first case, only a few points 0{q) close to 
the boundaries need to be clustered in order to control the interpo­
lation error, while far from the boundaries the grid points are 
equally spaced, as seen in Fig. 2(b), where the case of a piecewise 
polynomial interpolant for q = 6 and N = 30 is shown. In the sec­

ond case, when q =N, only one interpolating polynomial can be 
constructed out of the N + 1 grid nodes, thus /o(x)=/](x) 
= • • • = /N(X). Due to the uniqueness of the interpolating 
polynomials and the fact that the same error uniformization strat­
egy is used for the piecewise polynomial interpolant than for the 
Chebyshev interpolant, both approaches are identical. Thus, in 
the limit q = N, the proposed piecewise polynomial interpolant 
with the proposed non-uniform grid presents all the properties 
of spectral collocation methods, especially their spectral accuracy 
[42-44]. 

When q < N, most of the nodes are affected by the presence of 
the boundaries and the resulting grid point distributions are in be­
tween the two limiting cases. This can be seen in Fig. 2(c), where 
the grid spacing of the proposed non-uniform grids for different 
values of q and N = 50 are shown. As the degree of the interpola­
tion increases, the node distribution approaches the Chebyshev 
grid, while for small values of q it is more close to the uniform grid. 
Fig. 2(d) shows that the minimum grid spacing AXmin present in the 
proposed non-uniform grids is always greater than the minimum 
grid spacing AXminch of the Chebyshev grid. Moreover, from the fig­
ure in can be inferred that AXmin = C'(AXmin,ch'V/l) = C'((qN)"M. 

3.1.5. Spectral collocation methods 
The limit of q = N in the FD-q methodology is the Chebyshev-

Gauss-Lobatto spectral collocation method. The spectral methods 
offer an optimal compromise between the highest accuracy 
possible and the necessity of reducing the amount of information 
to be stored. The reason of the high accuracy of (collocation) 
spectral methods lies in the use of high-order interpolating polyno­
mials, comprising all the points in the discretization domain. 
Spectral methods use all the points and the error is 
e = 0{{1/Nf) -^0{e-^) [42,43]. Chebyshev-Gauss-Lobatto (CGL) 
points: 

Xj = cos(jn/N), j = 0,1, ,N, (23) 

indicated for the non-periodic configurations of interest, are used 
here. It is important to note again that these points are equivalent 
to the points obtained by using FD-qN and the elements of the dif­
ferentiation matrix V depend solely on the set of discretization 
points. Derivative matrices are defined in [43,42]. 



H I 

(a) (b) 

(c) (d) 
Fig. 2. Grid spacing Axi = Xi+i - Xi of the non-uniform grid for the piecewise polynomial interpolation (solid line), for the Chebyshev interpolation (dotted line), and for the 
uniform grid (dashed line) normalized with the uniform grid spacing AXIE, = 2/N for (a) q = 6 and N = 10, (b) q = 6 and N = 30, and (c) q = 10,20,30,40 and N = 50. (d) 
Variation of AXmm,cii/AXmm with q of the non-uniform grid for the piecewise polynomial interpolation with N = 50. 

3.2. Eigenvalue computation 

The generalized eigenvalue problems must be constructed and 
solved employing adequate algorithms, taking into account the 
memory and CPU-time requirements when the matrices are 
formed and stored. Although the algorithm allows for the use of 
dense or sparse linear algebra, the sparse version is much more 
efficient and it is the one used here. The complex matrices A and 
B of Eq. (4) are built using an in-house modified version of the 
SPARSK1T2 library [45] to work with complex arithmetic. To solve 
the eigenvalue problem, the Arnoldi algorithm [46] is employed, 
combined with the MUMPS library [47,48] (MUltifrontal Massively 
Parallel Solver) to perform the LU-decomposition and solve the lin­
ear algebraic systems with the possibility of making serial and par­
allel computations. 

The Arnoldi algorithm delivers a number of eigenvalues on the 
vicinity of a specific estimate value. Such value is set in the vicinity 
of the unstable/least-stable eigenvalue. Computational cost is 
greatly reduced when employing Arnoldi algorithm instead of 
the classical QZ method. More details can be found in the literature 
[46,21]. 

4. Results on the eigenvalue problem 

In a linear modal framework, the overall behaviour of an 
unstable dynamical system is determined by its leading unstable 

eigenvalues. Owing to the exponential growth of potential inaccu­
racies in the eigenvalues, the major concern when performing fluid 
flow instability analyses is to capture in an accurate manner both 
the real and the imaginary parts of at least, the leading eigen-
modes. This statement is true independently of the dimensionality 
of the base flow; however, on account of ambiguities in the base 
state determination, few global linear instability analyses are avail­
able with sufficient quality to be used for validation of those deliv­
ered by the spatial discretizations proposed herein. 

In this respect, validations commence with the well-known Orr-
Sommerfeld equation (OSE), to which the global eigenvalue prob­
lem reduces in case of parallel flows. Results are presented for 
the plane Poiseuille flow (PPF) [49,50] and for the Blasius boundary 
layer [51]. 

Eigenvalue problems whose spatial dependence is described by 
the Poisson operator are subsequently solved by the present meth­
odology, in both two and three spatial dimensions. The attractive­
ness of this spatial operator resides in the existence of analytically-
known results in regular two- and three-dimensional geometries 
and also in the fact that this spatial operator is at the heart of 
the global eigenvalue problem in both two and three spatial 
dimensions. 

In the main topic of this paper, global modal instability analysis 
results are obtained in five fluid flow applications, three in a 
BiGlobal and two in a TriGlobal eigenvalue problem context. The 
BiGlobal eigenvalue problems to solve differ in the number of base 



flow components: in the rectangular duct [6] only one such com­
ponent exists, and the EVP is complex; in the 2D lid-driven cavity 
[52], two base flow velocity components exist, while the wave-
number vector is normal to the base flow plane, and the stability 
eigenvalue problem is real; in the swept attachment-line boundary 
layer [53] all three base flow components exist and the eigenvalue 
problem is again complex. Finally, TriGlobal linear instability 
eigenvalue problems are solved, treating all three inhomogeneous 
spatial dimensions in a coupled manner. This is the most stringent 
test to which the proposed spatial discretization is employed. The 
same rectangular duct and 2D lid-driven cavity problems studied 
by BiGlobal analysis are solved by TriGlobal analysis. The solution 
is obtained at length-to-depth ratio of unity and a spanwise do­
main extent defined by the maximally amplified BiGlobal eigen-
mode, with which the TriGlobal analysis results are compared. It 
is worth noting that the very first TriGlobal instability analysis to 
appear in the literature was performed relatively recently in a 
time-stepping context [18], while presently four more such analy­
ses are available [54,19,55,56]. Of these, one [54] is performed in a 
matrix-forming context, while two in a time-stepping technique, 
all concerning the cubic lid-driven cavity with singular lid motion 
[55,56]. 

4.1. Local instability analysis 

The one-dimensional LNSE is the limit to which the global 
eigenvalue problem reduces in case of parallel flows. Results are 
presented for the plane Poiseuille flow (PPF) [49,50], the bounded 
nature of which implies the existence of a discrete eigenspectrum 
only, and for the Blasius boundary layer [51], where both discrete 
and continuous branches of the spectrum exist. 

In order to assess the ability of the proposed spatial discretiza­
tion to perform transient growth studies, the well-known pseudo-
spectra of the OSE [57] are also obtained. 

4.1.1. Eigenspectrum of plane Poiseuille flow 
The temporal stability analysis of the plane Poiseuille flow is 

considered first. The stability eigenvalue problem [49] is solved 
at Re = 10000, a = 1 and spanwise wavenumber ^ = 0, for which 
the converged leading eigenvalue in double precision arithmetic 
has been provided by Kirchner [58] as being cOr.c + ic«i,c = 
0.2375264888204682 + 10.0037396706229799. Owing to the 
relatively small leading matrix dimension, the dense linear algebra 
subroutine ZGGEV of LAPACK, based on the QZ algorithm [59], is 
used for the solution of the eigenvalue problem. The examined 
spatial discretizations are summarized in Table 1. All these finite 
difference methods are implemented at order 8 and on uniform 
grids, except for the last one, FD-q, which employs its particular 
grid. In addition, FD-q method is implemented not only at order 
8, but also at order 16, in order to prove the capability of this 
method of reaching the resolution properties of very high order 
schemes. In Fig. 3, relative error of the leading eigenvalue as 
function of the leading matrix dimension N + 1 is presented in 
order to compare accuracy between the different numerical 
methods. The relative error is defined in the following way: 

Table 1 
Examined spatial discretization methods. 

Spatial discretization method 

Spectral collocation 
Standard centered finite differences 
Compact finite-differences 
Dispersion-Relation-Preserving finite differences 
Summation-by-parts operators 
Finite difference methods with uniform error 

Acronym 

CGL 
STD 
Fade 
DRP 
SPB 
FD-q 

References 

[43,421 

-
1281 
1291 
[30,311 
[321 
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Fig. 3. Relative error for the amplification rate of the leading eigenmode of plane 
Poiseuille fiow at Re = W,a = 1 [49,501, obtained by (black) spectral collocation 
using CGL and (blue) high-order finite-difference methods of order 8: STD, Fade, 
DRP, SBP, as well as (red) FD-q with q = 8 and q = 16. N + 1 is the total number of 
discretization points. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

CO,- - CO,v 

ro,v 
(24) 

where m, is the computed imaginary part of the eigenvalue using 
N + 1 nodes and m, c the corresponding converged value quoted 
above. 

Several observations are worthy of discussion on the basis of 
these results and the analogous ones of the mode frequency, as 
well as all qualitatively identical results obtained for FD-q at differ­
ent combinations of discretization nodes, N + 1, and orders, q, not 
presented here. First, it is seen that, compared with any finite-dif­
ference method, the spectral collocation method needs less grid 
points to obtain a converged result, a fact which is well-known 
from classic linear stability studies [e.g. 60]. Second, when moni­
toring finite-difference discretizations of the same order (here 
methods of order 8 are shown), the standard and the compact fi­
nite-differences, the DRP and the SBP methods all require practi­
cally the same resolutions in order to deliver amplification rate 
results converged to the same degree. However, fastest conver­
gence, compared with any of the examined finite-difference meth­
ods of the same order, is offered by the FD-q8 method. In the 
example presented, in order to achieve a relative error of 0(10"^) 
in the amplification rate, N R̂  200 points are needed by FD-q8 
and N R̂  500 by all other finite-difference methods despite having 
all of them the same formal order of accuracy/convergence. Con­
versely, and much more important from the point of view of the 
subsequent use of the FD-q methods as the basis for spatial discret­
ization in the multi-dimensional eigenvalue problems, at a given 
affordable level of discretization, say N = 200 points, STD, Pade, 
SBP and DRP methods of order 8 have a relative error of 0(10"^) 
in the recovery of the leading eigenmode, while the error of the 
FD-q8 method is 0(10"*^). Third, as the order of the FD-q method 
is increased, its results approach those of the spectral collocation 
method, with which the method becomes identical when q =N 
as discussed in Section 3.1.4; the FD-ql6 results shown in Fig. 3 
are typical for the convergence history shown by FD-q methods 
of order 8 < q < N, requiring only N R̂  100 points to achieve the 



specified relative error level of 0(10 ^), or attaining an accuracy of 
0(10"'°) for N = 200 points. 

In summary, at all orders examined, the FD-q method performs 
better than all of the well-known high-order finite-difference 
methods. This is attributed to the fact that the FD-q method min­
imizes the interpolation error both at the interior and the bound­
ary (and near-boundary) points in a self-consistent uniform 
manner. In order for the standard high-order. Fade, DRP or SBP 
schemes to become competitive with FD-q, higher formal orders 
need to be used compared with that employed in the FD-q method. 
However, that increase in the order may not be straightforward for 
some schemes at q > 8 [30] or the resulting finite difference meth­
od may be unstable. 

On the other hand, for those methods for which using q > 8 is 
possible, the increase in bandwidth resulting from a comparatively 
high value of q is not an issue from the point of view of efficiency, 
when the one-dimensional eigenvalue problem is solved using full 
eigenspectrum computations and the QZ algorithm. However, FD-q 
has a competitive advantage in performing global instability anal­
yses, where exploitation of the matrix sparsity is essential; there 
one seeks to use the method having optimal convergence and accu­
racy properties between all available having the same sparsity pat­
tern, as will be discussed in subsequent sections. 

4.1.2. Pseudospectrum of plane Poiseuille flow 
The non-modal scenario for laminar-turbulent flow transition is 

now well-understood [33], the concept of pseudospectrum [61] 
being central to its theoretical description. In this Subsection the 
pseudospectrum of plane Poiseuille flow (PPF) is shown compar­
ing, for brevity, Chebyshev-Gauss-Lobatto collocation (CGL) and 
FD-ql6. 

As in the previous Section, results obtained are representative of 
all combinations of number of discretization points, N, and finite-
difference method order, q for FD-q; N = 128 and q = 16 are used 
presently, and the pseudospectrum has been computed using Eig-
Tool [62]. 

Fig. 4 shows the eigenspectrum and pseudospectrum obtained 
by the spectral collocation and finite-difference methods. 

Eigenspectrum results are graphically indistinguishable from each 
other while the pseudospectrum, plotted here at different levels of 
matrix perturbations, corresponding to 10"' for the innermost to 
10"^ in the outermost curve in Fig. 4, only shows discrepancies 
at large matrix perturbation levels. However, given that q ^ N, 
the overall agreement is quite satisfactory. If an improved agree­
ment is sought, the order q or the number of points N may be in­
creased in order for the FD-q method to deliver results 
approaching those obtained by the spectral collocation method. 
As mentioned, though, it is not perfect agreement of the FD-q with 
the spectral collocation method that is sought, but rather the abil­
ity of the former method to deliver accurate description of the 
pseudospectrum, as shown in the results of Fig. 4, at a smaller cost 
thanks to the fact that q ^N, thus improving the sparsity pattern. 

4.1.3. Eigenspectrum of the Blasius boundary layer 
The accuracy properties of the FD-q method are preserved in 

open flows, where a mapping transformation is needed to transfer 
data from the standard domain x e [-1,1] of both the CGL and the 
FD-q methods onto a semi-infinite domainy e [0,y„]. The transfor­
mation used is 

y = L 
1 -X 

1 +s + x' 
L = 

Vo^Vl 

2y, s = 2L/y„ (25) 

where y„ = 150 is the location where the calculation domain is 
truncated, with half the points being placed between the wall and 
y, = 5 [60]. 

Fig. 5 shows the leading unstable eigenmode and the least sta­
ble part of the Blasius eigenspectrum at Res- = 580 and a = 0.179 
[51], as recovered by the CGL spectral collocation method on 
N + 1 = 101 points, as well as FD-ql2 and FD-q24 on the same 
number of nodes. Even at a value of q which is an order of magni­
tude smaller than N, the entire discrete eigenspectrum is seen to be 
recovered by the FD-q method as reliably as by the CGL spatial dis­
cretization. None of the three methods is capable of capturing the 
continuous spectrum correctly; as is known analytically, the latter 

Fig. 4. Eigenspectrum and pseudospectrum of plane Poiseuille flow at 
i?e = 10'',a = l [49], obtained by spectral collocation using CGL and high-order 
flnite-difference method FD-q. Solid lines and empty circles: CGL, Dashed lines and 
solid circles: FD-ql6., both of them with N +1 =129 discretization points. Levels 
from inner to outer isoline, 10"^10"'^,10"^10"'',10"^,10"^ Note that c = m/a 
refers to phase velocity. 

0 

0.2 

0.4 

0.6 

0.8 CGL 
FD-ql2 
FD-q24 

, 

0 

0 

o 
A 
V 

0 

0 

o 

0 

1 

/ 
OS 

O E 

o *• m 
-a 

^ ^ 

o 

0 

^ 
° ^ 

^ 

A 
V 

, 
0.2 04 0.6 0.8 

Fig. 5. Eigenspectrum of Blasius flow at Reg- = 580 and a = 0.179 [51], obtained 
with spectral collocation based on mapped CGL and two high-order flnite-
difference methods FD-q of order 12 and 24 with N +1 =101 discretization points. 
Note that c = m/a refers to phase velocity. 



is a vertical line at Cr = cOr/a = 1 (c refers to phase velocity). Inter­
estingly, even at q = 12 the discrete approximation of the continu­
ous spectrum is more vertical than the one delivered by the 
spectral collocation method, although as q increases the FD-q 
and spectral results come closer, and collapse onto each other at 
q = N, pointing towards the existence of an optimum value of q 
which is unknown a priori. Finally, an additional discrete mode is 
recovered at Cr = 0.8 using the FD-ql2 and FD-q24 methods due 
to the displacement of the continuous part of the spectrum. 

4.1.4. Pseudospectrum of the Blasius boundary layer 
This Subsection of validation of results of the FD-q method 

against known solutions of the one-dimensional eigenvalue prob­
lem closes with the presentation of the pseudospectrum of Blasius 
flow at the same parameters as those at which the eigenspectrum 
has been obtained. Fig. 6 presents the eigenspectrum obtained by 
the spectral collocation method, already shown in Fig. 5, alongside 
the one delivered by FD-ql6, which exhibits the properties dis­
cussed in the previous Subsection. In addition, the pseudospectrum 
obtained at perturbation levels of 10"' to 10"^ (inner-to-outer 
curves) is shown. As in the case of the plane Poiseuille flow, close 
qualitative agreement is seen between the two sets of results, 
although the poor recovery of the continuous spectrum by both, 
the spectral and the finite-difference methods, results in larger dis­
crepancies in the pseudospectrum in that region. By contrast, the 
pseudospectrum associated with the discrete eigenvalues is repro­
duced in close agreement by both methods, despite the fact that 
q = 16 is an order of magnitude smaller than N + 1 = 129, the dis­
cretization nodes used in both methods. 

4.2. The 2D Helmholtz eigenvalue problem 

In two spatial dimensions the Helmholtz eigenvalue problem 
(14) is: 

= 0. (26) 

6"-0.4 -

Fig. 6. Eigenspectrum and pseudospectrum of the Blasius boundary layer at 
Rey =580 and a = 0.179 [51], obtained by spectral collocation using CGL and FD-q. 
Solid lines and empty circles: CGL, Dashed lines and solid circles: FD-ql6, both of 
them with N + 1 = 129 discretization points. Levels from inner to outer isoline, 
10"', 10"^ 10"^ 10"", 10"^ 10"^ 

Such problem is useful in assessing the accuracy of the proposed 
spatial discretization method comparing the recovered eigenvalues 
with the analytical solution of this problem in the rectangular 
membrane domain il = {x G [-1,1]} x {y G [-1,1]} [e.g. 34]. Such 
solution is the following: 

l 2 •-^K + n'y); ,ny = 1,2,3, (27) 

Higher eigenvalues/eigenfunctions (nx ,ny>l) are of special 
interest due to the need of using a relatively high number of nodes 
for an accurate description. This is in contrast with the first few 
eigenvalues, which are already recovered using N R̂  10. 

Fig. 7 shows the convergence history of the numerical solution 
of the 2D Helmholtz problem for a high eigenvalue 
(i^/(7r^/4) = 34) comparing the same finite difference methods 
used to obtain the OSE results in Fig. 3. Similar conclusions to 
the one reached in the Orr-Sommerfeld flow instability problem 
solved in the previous applications are also drawn here: maintain­
ing the order of the scheme (order 8) FD-q presents higher accu­
racy than the other finite difference methods, and with a higher 
order (order 16), FD-q reaches double-precision employing a num­
ber of nodes only two times larger than employing the spectral col­
location method. 

Fig. 8(a) shows the convergence history of the numerical solu­
tion of the 2D Helmholtz problem for the same eigenvalue. Differ­
ent orders of FD-q methods are implemented and compared with 
CGL spectral collocation method. Special interest is focused on 
intermediate values of the order of the method, e.g. q = 12. In such 
case single-precision convergence is achieved using approximately 
two times more discretization points than with the spectral collo­
cation method. In addition, double-precision convergence is 
achieved with less than four times more nodes than the ones re­
quired by the spectral collocation method. For completeness. 
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Fig. 7. Convergence history of the solution of the 2D Helmholtz eigenvalue problem 
for the eigenvalue A /̂(71̂ /4) =34, obtained by (black) spectral collocation using 
CGL and (blue) high-order finite-difference methods of order 8: STD, Fade, DRF, SBF, 
as well as (red) FD-q with q = 8 and q = 16. The number of discretization nodes 
used is the same in both spatial directions and is denoted by N + 1. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Fig. 8. (a) Convergence history of the solution of the 2D Helmholtz eigenvalue problem for the eigenvalue Â  /(ji^ /4) = 34, obtained using CGL and a suite of FD-q methods of 
orders 4,8,12,16 and 20. The number of discretization nodes used is the same in both spatial directions and is denoted byN + 1. (b) Corresponding eigenfunction using FD-
ql2 with Nx xNy = 80 .̂ Shown are contours (-0.9:0.1:0.8) with isolines of positives (solid line) and negatives (dashed line) values. 

Fig. 8(b) displays the eigenfunction corresponding to the eigen­
value i^/(7r^/4) = 34, obtained numerically using FD-ql2 with 

4.3. BiGlobal instability analysis 

Attention is now turned to the main subject of this paper, 
namely modal global linear instability, discussing BiGlobal insta­
bility first. Three applications are selected for validation purposes: 
the rectangular duct [6], the lid-driven cavity [52,63] and the 
swept leading-edge boundary layer [53,64]. As mentioned in the 
introduction to this section, these problems are selected because 
they are governed by one, two and three base flow velocity compo­
nents, respectively, and also permit validating both the real and the 
complex form of the eigenvalue problem. 

4.3.1. The rectangular duct flow 
In two coupled spatial directions, the rectangular duct [6] of 

cross-sectional aspect ratio A, driven by a constant pressure gradi­
ent along the axial (unbounded) direction, is the two-dimensional 
extension of the plane Poiseuille flow. Its base flow is known ana­
lytically [65] and has a single component along the (homogeneous) 
wavenumber vector direction. Global flow instability in this appli­
cation is governed by a complex eigenvalue problem. 

Considering the rectangular duct defined in the domain 
il = {x e [-A,A]} X {y e [-1,1]}, a constant pressure gradient in 
the unbounded z direction drives a steady laminar flow which is 
independent of z and possesses a velocity vector U = 
[0,0, W(x,y)]^ with a single velocity component W{x,y) along the 
z spatial direction. The latter satisfies the Poisson equation that 
may be solved in series form [66]. 

Table 2 presents convergence history results for the numerical 
solution of the 2D EVP presented in Eq. (4) using the matrices 
(10) with base flow velocity U = [0,0,W(x,y)]'^, using CGL and 
FD-ql6 at a subcritical Reynolds number. Re = 1000, and wave-
number parameter p = n.ln addition, Richardson-extrapolation re­
sults are also shown. Considering the Richardson extrapolation 
value of CGL spectral collocation method as converged eigenvalue, 
8 decimal digits are converged in cOr and 9 in co, when using CGL 
methods with N^ > 60^. On the other hand, the same order of con­
vergence is reached when using FD-ql6 with N^ > 90^. Fig. 9 

Table 2 
Convergence history of BiGlobal instability analysis of rectangular duct flow at 
A = ̂ ,Re = 1000 and 11 = n comparing the leading eigenmode results using CGL and 
FD-ql 6 and the corresponding Richardson extrapolations. 

CGL 

Richardson Ext. 

FD-ql6 

Richardson Ext. 

N^ 

30̂  
40̂  
50̂  
60̂  
70̂  

30̂  
50̂  
70̂  
90̂  
110^ 

Or 

2.9027647730 

2.9027654432 

2.9027654495 

2.9027654518 

2.9027654528 

2.9027654541 

2.9027679758 

2.9027654409 

2.9027654496 

2.9027654520 

2.9027654529 

2.9027654541 

COi 

-0.10353535398 

-0.10352492808 

-0.10352492616 

-0.10352492608 

-0.10352492609 

-0.10352492635 

-0.10352715467 

-0.10352492446 

-0.10352492422 

-0.10352492512 

-0.10352492555 

-0.10352492637 

shows the convergence history for the different spatial discretiza­
tion schemes, using the converged result of Table 2, co = 
2.9027654541 - iO.10352492635, as correct value. Different 
slopes arise due to the discontinuities of the derivatives in the cor­
ners of the domain [43]. As expected, the convergence rate for FD-
ql 6 and CGL are better than for the order 8 schemes. However, the 
higher degree of sparsity in the 8th-order scheme makes FD-q8 the 
more efficient one in terms of the numerical solution of the 2D EVP 
presented in Eq. (4) with the matrices (10). 

4.3.2. The regularized lid-driven cavity 
The two-dimensional lid-driven cavity, three-dimensional 

(non-zero spanwise wavenumber) BiGlobal instability analysis of 
which was first performed using singular boundary conditions 
[52,63], is solved next, after regularizing the lid motion. Regulari-
zation eliminates the corner singularities at the two ends of the 
moving lid and permits obtaining highly-accurate base flow solu­
tions. Regarding global instability in this problem, the wavenum­
ber vector is normal to the plane on which the base flow 
develops, and a simple transformation of the linearized Navier-
Stokes equations reduces the two-dimensional eigenvalue problem 
into one governed by real coefficients [21]. 
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Fig. 9. Convergence history of the BiGlobal eigenvalue problem applied to the 
rectangular duct flow at i?e = 1000 and ll = n, with A = l for the eigenvalue 
0 = 2.9027654541-10.10352492635, obtained by (balck) spectral collocation 
using CGL and (blue) high-order flnite-difference methods of order 8: STD, Fade, 
DRP, SBP, as well as (red) FD-q with q = 8 and q = 16. The number of discretization 
nodes used is the same in both spatial directions and is denoted by N + 1. (For 
interpretation of the references to colour in this flgure legend, the reader is referred 
to the web version of this article.) 
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Fig. 10. Convergence history of the BiGlobal eigenvalue problem applied to the 
regularized lid-driven cavity flow at Re = 1000 and yff = 15, with A = 1 for the most 
unstable eigenvalue m = 10.108337, obtained by (black) spectral collocation using 
CGL grid and (blue) high-order flnite-difference methods of order 8: STD, Fade, DRF, 
SBF, as well as (red) FD-q with q = 8 and q = 16. The number of discretization nodes 
used is the same in both spatial directions and is denoted by N + 1. (For 
interpretation of the references to colour in this flgure legend, the reader is 
referred to the web version of this article.) 

The direction x is taken to be in the direction of the motion of 
the lid andy to be along the normal to this direction. The base flow 
is considered independent of the third (spanwise) direction z. Thus, 
the domain is defined as il = {x e [0,A]} x {y e [0,1]}, where A is 
the aspect ratio. The steady base flow vector under these assump­
tions has two velocity components, U = [U{x,y), V(x,y), 0]^, and it is 
obtained by solving the vorticity-transport equation (see [21] for 
more details). The boundary conditions are V = 0 on all four walls 
and U = 0 in all the walls but the corresponding to the lid where 

[ 7 = 1 • (2x-\y'f X€ [0,1]. (28) 

In this manner, the discontinuity in the boundary condition at 
U(x = 0 , y = l ) and U(x = l,y = l) of the lid-driven-cavity flow 
[67,68] is avoided, since it is a potential source of suboptimal 
convergence. 

Fig. 10 presents convergence history results using the same 
suite of 8th-order finite difference methods used so far, in addition 
to FD-ql6 and CGL. At the conditions at which the eigenvalue prob­
lem in Eq. (4) with the matrices (10) is solved, the leading eigen-
mode is stationary, so comparisons are performed using only the 
imaginary part of the leading eigenvalue. The converged value used 
for this result is the average obtained while Richardson extrapola­
tion of the CGL and FD-ql6 methods. The same qualitative conclu­
sions reached by application of these discretization methods in the 
previous problems are reached here too, namely that the FD-q 
methods are superior in terms of accuracy to all other finite-differ­
ence approaches. 

It is worth noting in this context that the only previous known 
work in the literature which compares finite-difference and spec­
tral collocation methods for global instability analysis is the work 
by Merle et al. [27] who also used the lid-driven cavity as test. 
The conclusion reached in that work was that the DRP scheme is 
the best alternative in terms of computational cost to CGL from a 
combined accuracy and efficiency perspective. This conclusion is 

superseded by the results of Fig. 10: while the DRP method has 
the same formal resolution capacity as standard, Pade or SBP fi­
nite-differences, and may indeed be more efficient than some of 
the other methods examined (comparisons in [27] were confined 
to Pade and DRP), the 8th-order member of the FD-q methods fam­
ily significantly outperforms all its peers; using N = 100 it delivers 
a relative error of the most unstable eigenmode of ©(lO""*), as op­
posed to 0(10"^) that all other finite-difference methods deliver. In 
addition, due to the nature of the method, the sparsity of DRP is 
smaller than the one of FD-q when the order of the method is 
the same in both numerical schemes. As in the previously studied 
problems, increasing the order of the FD-q method utilized delivers 
results approximating those obtained by the spectral collocation 
method. 

4.3.3. The swept attachment-line boundary layer flow 
Still within a BiGlobal context, the eigenvalue problem govern­

ing instability of the incompressible swept Hiemenz flow is also 
solved using the proposed spatial discretization methods. Unlike 
the two previous two-dimensional base flows, here all three base 
flow velocity components are present and no reductions of the lin­
earized Navier-Stokes equations are possible. Here too a complex 
eigenvalue problem needs to be solved. One advantage of this 
application is that the base flow is obtained by the solution of sys­
tems of coupled ordinary differential equations at arbitrarily high 
precision. In addition, accurate global instability results of this flow 
are available [53] and have been modeled by simple one-dimen­
sional eigenvalue problems in both the orthogonal [64], and the 
non-orthogonal [69] leading-edge boundary layer flow, providing 
highly accurate data to compare against. 

The base flow is provided by the swept Hiemenz boundary 
layer, which models steady stagnation line flow. The velocity com­
ponents are independent of the homogeneous direction along the 
attachment line, z, which is assumed to be infinite, while all three 
base flow velocity components are taken to depend on the wall-
normal direction y. Moreover, the chordwise velocity component 



Table 3 
BiGlobal instability analysis of the incompressible swept attachment boundary layer 
flow with at Re = 800 and /J = 0.255. The first two most unstable modes, GH and Al 
are shown. Comparison with the results presented by Lin & Malik [53]. Note that 
c = 01/p refers to phase velocity. 

N^ Cr(GH) Ci(GH)(xl02) CriAV) Ci(Al)(xlO^) 

CGL 

FD-ql6 

FD-q8 

L&M [531 

30̂  
40̂  
50̂  
60̂  

30̂  
50̂  
70̂  
90̂  

30̂  
50̂  
70̂  
90̂  

0.35840506 

0.35841015 

0.35840978 

0.35840997 

0.35842026 

0.35840951 

0.35840947 

0.35840990 

0.35840088 

0.35841011 

0.35840976 

0.35840991 

0.35840982 

0.58473709 

0.58531622 

0.58532857 

0.58531393 

0.58484758 

0.58533098 

0.58529166 

0.58532679 

0.58685134 

0.58540140 

0.58530175 

0.58532658 

0.58532472 

0.35791126 

0.35792172 

0.35792622 

0.35792318 

0.35792767 

0.35791855 

0.35791927 

0.35791979 

0.35790972 

0.35797511 

0.35791916 

0.35791980 

0.35791970 

0.41108252 

0.41104656 

0.41027206 

0.40962663 

0.40974017 

0.40989817 

0.40986547 

0.40988838 

0.41179370 

0.40990771 

0.40989455 

0.40988576 

0.40988667 

U{x,y) is taken to be linearly dependent on the chordwise coordi­
nate X, while the wall-normal velocity component V(y) and the 
velocity component W(y) along the attachment line are taken to 
be independent of x [65], 

The eigenvalue problem in Eq. (4) with the matrices (10) is 
solved with this attachment line boundary layer base flow using 
the same set of parameters of [53]: Re = 800 and p = 0.255. The 
transformation used for the wall-normal direction y is the same 
as the one used for the Blasius boundary layer problem (25) but 
with y^ = 150 and Vi = 4. In the chordwise coordinate, a linear 
transformation is used to map the standard CGL or FD-q domain 
into x e [-200,200], Table 3 shows comparisons with the con­
verged results of [53] using CGL, FD-q8 and FD-ql6 for the first 
two most unstable modes, FD-q8 and FD-ql6 results show very 
good agreement with the literature result and even outperform 
the CGL results of the second eigenvalue using low resolution 
(e,g, Nx X Ny = 50^), which is more difficult to be calculated 
numerically, due to the closeness between both modes. 

4.4. The 3D Helmholtz eigenvalue problem 

In three spatial dimensions the Helmholtz eigenvalue problem 
(14) is defined by the following equation: 

9x2 
0, (29) 

Such problem is useful in assessing the accuracy of the proposed 
spatial discretization method, especially in the recovery of the high­
er eigenvalues/eigenfunctions, nx,ny,nz » 1, The recovered eigen­
values are compared with the analytical solution of this problem 
in the domain Cl = {xe[-1,1]} x {y G [-1,1]} x {z e [-1,1]} [34], 
Such solution is the following: 

-nl]; nx,nv,nz = 1,2,3, (30) 

Fig, 11(a) shows the convergence history of a high eigenvalue 
(A'^/{TI^/4) =43), Conclusions analogous to those reached in the 
two-dimensional Helmholtz eigenvalue problem and in the previ­
ously addressed applications are also drawn here. Special interest 
is focused on intermediate values of the order of the method, e,g, 
q = 12,q = 14. Single-precision convergence is achieved using 
approximately two times more discretization points than with 
spectral collocation methods, and double-precision convergence 
is achieved with less than four times more nodes than with spec­
tral collocation methods. 

For completeness. Fig, 11(b) displays the eigenfunction corre­
sponding to the eigenvalue (A'^/{TI^/4) = 43), obtained numerically 
using FD-ql2, showing that a non-trivial structure in terms of gra­
dients is obtained. As with its two-dimensional analogue, reliable 
spatial discretization of the three-dimensional Poisson operator 
sets the scene for the solution of the TriGlobal eigenvalue problem, 

4.5. The TriGlobal eigenvalue problem 

Finally, the TriGlobal linear instability eigenvalue problem in 
Eq, (4) formed by the matrices (13) is solved, treating all three 
inhomogeneous spatial dimensions in a coupled manner. 

Using the two-dimensional rectangular duct and regularized 
lid-driven cavity base states previously calculated, a three-dimen­
sional, spanwise homogeneous base flow is constructed and 

Fig. 11. (a) Convergence history of the solution of the 3D Helmholtz eigenvalue problem for the eigenvalue A^/(Tf /4) = 43, obtained using CGL and a suite of FD-q methods of 
orders 4, 8,12,16 and 20. The number of discretization nodes used is the same in the three spatial directions and is denoted by N + 1 . (b) Iso-surfaces of the corresponding 
eigenfunction obtained using FD-ql2 with Nx x Ny x N^ = 60^. 



analyzed by solving the three-dimensional eigenvalue problem 
without exploitation of the spanwise periodicity. This is the most 
stringent test to which the proposed spatial discretization is ex­
posed. In view of the results, only the FD-q method is used for 
the solution of Eq. (4) formed by the matrices (13). 

4.5.1. The rectangular duct flow 
The rectangular duct flow is analyzed also with TriGlobal anal­

ysis at Re = 1000, employing FD-qlO in both x andy directions. For 
the TriGlobal analysis, Np Fourier collocation points are used along 
the spanwise direction, in order to discretize a spanwise length 
Lz = 2n/figQ. The parameter fi^Q = n'ls chosen to enable direct com­
parisons of the present TriGlobal with the results obtained by the 
solution of the BiGlobal analysis in which only (x,y) are discretized 
in a coupled manner. Results are presented in Table 4, where a very 
good agreement between BiGlobal and TriGlobal analysis results is 
observed: the damping rate obtained by BiGlobal analysis using 
the highest attainable resolution on the used desktop computer, 
Nx X Ny = 70^ CGL points and that delivered by the TriGlobal anal­
ysis with Nx X Ny = 56^ FD-qlO points and Nf = 12 Fourier colloca­
tion points, have a relative difference of 0(10"'). 

4.5.2. The regularized lid-driven cavity 
The last test to which FD-q methods are subject is the two-

dimensional regularized lid-driven cavity flow analyzed with Tri­
Global analysis. For the solution of Eq. (4) formed by the matrices 
(13), Nf Fourier collocation points are used along the spanwise 
direction, in order to discretize a spanwise length L^ = 2n/figQ, 
and FD-qlO in both of the x and y directions. The parameters 
Re = 1000 and figQ = \5 are chosen in order to directly compare 
the present TriGlobal results with the results obtained with the 
BiGlobal analysis of Section 4.3.2. The results are presented in 
Table 5, where an acceptable agreement between BiGlobal and 
TriGlobal analysis results is observed: the damping rate obtained 

Table 4 
TriGlobal instability analysis of the rectangular duct flow in the domain 

n = { x e [-1,1]} x { y e [-1,1]} X { z e [-1,1]} at te = 1000 using FD-qlO for x and 

y direction wi th N + 1 points and Fourier collocation wi th Nf points in z. The 

converged BiGlobal result for the same set of parameters (i.e. using /J = TT) is shown in 

Table 2: co = 2 . 9 0 2 7 6 5 4 5 4 - 1 0 . 1 0 3 5 2 4 9 2 6 4 . Tm and TAR respectively refer to t ime 

spen t in the LU decomposi t ion of the matr ix and the Arnoldi i teration. Note tha t ^ 

refers to in-core whi le the rest of results are out-of-core calculations. 

N^ XNF 

32^ X 12 

40^ X 12 

48^ X 12 

42^ X 16 

56^ X 12 

Or 

2.90275822 

2.90276481 

2.90276539 

2.90276510 

2.90276545 

COi 

-0.103516753 

-0.103523881 

-0.103524652 

-0.103524201 

-0.103524809 

Memory (MB) 

48621" 

2980 

4611 

6253 

6539 

Tw (s) 

3531" 

1006 

1735 

3345 

5247 

TAR{S) 

0.81" 

8.8 

16.4 

19.0 

20.6 

Table 5 
TriGlobal instability analysis of the regularized lid-driven cavity flow in the domain 

n = { x e [0,1]} X {y e [0,1]} x { z e [0,27r/15]} at i?e = 1000 using FD-qlO for x a n d y 

direction wi th N + 1 points and Fourier collocation wi th Nf points in z. The converged 

BiGlobal result for the same set of parameters (i.e. using /J = 15) is shown in Fig. 10: 

£0 = 10.108337. 

N^ xNf 

32^ X 12 

40^ X 12 

48^ X 12 

42^ X 16 

56^ X 12 

COi 

0.102726 

0.106135 

0.106903 

0.106538 

0.106804 

Memory (MB) 

49201" 

3226 

4578 

6061 

6704 

Tm(s) 

377I" 

1447 

1819 

3097 

3947 

TAR{S) 

O.9I 

8.8 

15.8 

16.5 

25.4 

by BiGlobal analysis using Nx x Ny = 70^ CGL points and the one 
delivered by TriGlobal analysis with Nx x Ny = 56^ FD-qlO points 
and Nf = 12 Fourier collocation points show a relative difference 
of 0(10"^). This discrepancy is expected to improve by increasing 
resolutions. The degree to which this is possible for the present 
state-of-the-art computations is discussed next. 

5. The efficiency advantages of the FD-q method 

Once the accuracy of FD-q methods has been established, atten­
tion may be turned to the efficiency advantage that they offer over 
spectral collocation methods. The solution algorithm is based on 
subspace iteration in which the spatial discretization matrix is 
formed, stored and LU-decomposed using sparse linear algebra 
routines and, therefore, the sparsity pattern is the key parameter 
for the success of the overall algorithm. Only the FD-q spatial dis­
cretization has been monitored in terms of the memory and CPU 
time requirements for the serial solution of the incompressible 
BiGlobal EVP, on account of the superior accuracy properties of this 
over other finite-difference methods of the same formal order (and 
sparsity pattern). A visual indication of the savings expected by 
using a given FD-q method over the CGL spatial discretization is of­
fered by the sparsity patterns resulting from spatial discretization 
of the left-hand-side BiGlobal matrix AID of Eq. (10), respectively 
shown in Fig. 12(a) for CGL and Fig. 12(b) for FD-q4, both plotted 
using N = 20. The key parameter when a sparse solver is used is 
the Number of Non-Zero elements (NNZ). For the differential oper­
ators of this work, this parameter is reduced by a factor of 
0{{q + 1)/(N+ 1)), with q the order of the used finite-difference 
scheme (i.e. q + 1 is the stencil of the scheme) and N + 1, the num­
ber of points used to discretize the problem in each spatial direc­
tion for all the differentiation matrices.^ 

The computational requirements of the overall numerical solu­
tion of the EVP are imposed by those of the LU-decomposition of 
the sparse matrix. The required memory and elapsed time for this 
factorization cannot be predicted a priori and the ratio 
((q + 1)/(N+1)), elevated to a power to be determined later, is 
used next to relate the required memory and elapsed time of the 
LU-decomposition of FD-q with those of CGL spatial discretization. 
The flow instability problem chosen to study computational 
requirements is one in which all velocity components and their 
derivatives need to be discretized: the attachment line boundary 
layer (see Section 4.3.3). Spatial discretization methods used are 
the CGL discretization working in dense (results taken from [70]) 
and comparing them with the respective results corresponding to 
sparse CGL, FD-q8, FD-ql6 and FD-q24 spatial discretizations. For 
this problem, N = Nx = Ny, so the leading dimension of the matrix 
operator is M = 4 (N + 1 )^. 

Table 6 shows the required memory for the LU decomposition 
of the BiGlobal EVP matrix using dense and sparse routines in con­
junction with CGL discretization, as well as three members of the 
FD-q family and sparse linear algebra. The quantity of required 
memory when working in sparse is significantly reduced respect 
to the quantity of required memory working in dense, which is the­
oretically Mem Ri 0{M^) R̂  ©(N"*). The memory requirements of 
the FD-q8 method are found to be smaller by one order of magni­
tude compared with those of the CGL method. In order to obtain a 
relation between the respective quantities the formula 

Mem FD-q 
q + 1 
N + 1 

Memr (31) 

' For the more s t r ingent case of compressible BiGlobal instability analyses, or w h e n 

non-or thogonal curvilinear mappings are used to discretize the problem, cross-

derivatives are present in the differential operators . In this case, NNZ is reduced by a 

factor of C'(((q + 1)/(N + 1))^). 



Fig. 12. Sparsity pattern of the left-hand-side BiGlobal operator matrix with N +1 = 21 discretization points per spatial direction using (a) CGL and (b) FD-q4 in the 
attachment line boundary layer problem, (blue) Real part and (red) imaginary part of the non-zero elements. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Table 6 
Memory requirements for the LU decomposition (MB) in the attachment line 
boundary layer problem, using different resolutions and worldng with dense algebra 
for CGL and sparse algebra for CGL, FD-q24, FD-ql 6 and FD-q8. Note that N = N, = N,. 

N 

40 
50 
60 
70 

'-'-̂ 1-dense 

760 
1747 
3494 
6230 

"-•-JI-S parse 

584 
1350 
3078 
5544 

FD-q24 

444 
705 
1217 
1889 

FD-ql 6 

246 
457 
775 
1174 

FD-q8 

107 
179 
284 
436 

is assumed and used to identify (fit) tlie constant exponent a using 
tlie results of Table 6, plotted in Fig. 13(a). Independently both the 
CGL and the FD-q results are taken to follow a curve 
Mem oc (N +1)". This exponent is acGL = 4.1 for the sparse CGL 
method, which is very close to the theoretical exponent of 4 for 
dense computations, while the values 2.7,2.8 and 2.6 have been 
identified for FD-q24, FD-ql 6 and FD-q8, respectively. Using the 
average between the three FD-q cases, apo-q = 2.7, the constant 
exponent of Eq. (31) is approximated by a = ac ' F D - q = 1.4. 

Fig. 13(b) shows the collapse of all FD-q curves using Eq. (31) and 
these constant values. The required memory for FD-q scales as 
MempD-q ~ 0{N^'') ~ ©(JW'̂ ), which outperforms computations 
using CGL, the latter scaling as Memcci ~ 0{M^). 

Turning to the elapsed time for serial LU factorization of the ma­
trix pertinent to the same global stability EVP, results in Table 7 are 
presented for the same methods. The theoretical prediction of 
0{M^) ~ 0{N^) is verified by the CGL either sparse or dense results. 
The most striking result of this table is the order (s) of magnitude 
decrease of CPU time that the FD-q method offers, when compared 
with either of the CGL sparse or dense solution. 

In order to quantify the relation between the elapsed times re­
quired by the CGL and the FD-q methods, the formula 

Time FD-q = 
1 

N + 1 
; Timer (32) 

is assumed and used to fit the constant exponent b. Fig. 14(a) shows 
the results of Table 7. As in the case of memory requirements, either 
method is taken to follow a curve Time « (N-i-1)^. For the CGL 
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o 

Pi 

10000 

1000 

Fig. 13. (a) Required memory for LU-factorization and (b) rescaled memory using the Eq. (31) versus number of discretization points per direction, N + 1. 



Table 7 
Elapsed time for the LU decomposition (s) in the attachment line boundary layer flow 
problem, using different resolutions and working with dense algebra for CGL and 
sparse algebra for CGL, FD-q24, FD-ql6 and FD-q8. 

N 

40 
50 
60 
70 

•-^^dense 

152.7 
553.9 

1603.4 
4665.8 

"-•-JI-S parse 

34.7 
97.0 

292.0 
516.3 

FD-q24 

18.0 
33.1 
80.2 

136.8 

FD-ql6 

7.6 
16.8 
35.2 
57.3 

FD-q8 

2.0 
3.6 
6.3 

10.8 

method the exponent extracted from the results is /?CGL = 6.0, 
which is exactly the theoretical exponent for dense calculations, 
while the exponent values of 3.8,3.7 and 3.1 have been obtained 
for FD-q24, FD-ql6 and FD-q8, respectively. Again, using the aver­
age value of the three FD-q cases, /?FD-q = 3.5, the constant exponent 
of Eq. (32) is approximated by i) = /?CGL - Pfo-q = 2.5. Fig. 14(b) 
shows the collapse of the FD-q CPU-time curves onto a single FD-
q curve, which has the same slope as that obtained using CGL dis­
cretization, when Eq. (32) is used with this parameter value. There­
fore, the CPU time for FD-q scales as Timepo-q ~ 0{N^-^) ~ ©(JW''), 
instead of Timecci ~ ©(iW )̂ for CGL. 

The reductions in computational effort by the sparse solution of 
the BiGlobal eigenvalue problem in which the matrix is formed 
using the FD-q methods are made palpable by recalling the largest 
such solution to-date, namely the massively parallel computations 
of Kitsios et al. [24] and Rodriguez and Theofilis [26]. The latter 
work was performed on the JUGENE supercomputing facility 
[71], on which 2048 processors were used in order to distribute 
the 1 TB large matrix resulting from the CGL spectral collocation 
discretization of the incompressible operator on a N^ x Ny = 250^ 
grid, employing the parallel dense linear algebra library ScaLAPACK 
[72], with an elapsed time of R̂  10.5 hours of wall-clock time 
(^ 22000 total hours of CPU time). Using the BiGlobal results of 
Fig. 10 as a guidance, and employing the relation NCGL ~2NFD-q8 
at which the CGL and the FD-q8 spatial discretizations both reach 
a relative error of SQ, R̂  10"^ in the leading eigenmode, the results 
of [24,26] could be obtained by employing N^ x Ny = 500^ FD-q8 
points. The memory estimation provided by the sparse direct sol­
ver MUMPS on a serial desktop is 28 GB for in-core and 3.2 GB 
for out-of-core calculations. The estimation of the respective 
elapsed time is calculated by extrapolating the results of Table 7 
for CGL sparse results to N = 500 with the previously calculated 
slope ĉGL = 6.0, resulting Timecci ~ 18000 CPU hours, and then 
using Eq. (32) to obtain the estimation of Timepo-qs ~ 46 CPU 
minutes. 

In order to complete the cost estimations, the relation 
NCGL ~ 4NFD-q8. observed in the results of Fig. 8 at which the CGL 
and the FD-q8 spatial discretizations both reach a relative error 
of Sj Ri 10"^ in the leading eigenmode, is adopted. Now, using 
NfD-qs = 1000, the memory estimation provided by MUMPS is 
137 GB for in-core and 13.3 GB for out-of-core calculations. For 
the time estimation, following the same procedure, the result of 
TimepD-qs ~ 9 CPU hours is obtained. While these estimates are 
one order of magnitude larger than those corresponding to 
N^xNy = 500^ FD-q8 collocation nodes, the FD-q methods still of­
fer an interesting alternative to the commonly employed spectral 
collocation methods for this class of stability problems. 

6. Conclusions 

The prime consideration in performing numerical solutions of 
the linear flow instability eigenvalue problems is accuracy. Follow­
ing the influential work of Orszag [49], spectral spatial discretiza­
tion has historically been the method of choice for spatial 
discretization of the linear local stability analysis operator, a ten­
dency which to a large extent continues presently in the context 
of global linear flow instability analysis. The present contribution 
has presented a comparison of a suite of high-order finite-differ­
ence spatial discretizations of the linear stability operator in regu­
lar Cartesian two- and three-dimensional domains and compared 
the respective results against those delivered by standard multi­
dimensional spectral collocation discretization of the same spatial 
operators. The FD-q method [32] has been found to outperform all 
its peers at any given formal order of accuracy, and tend toward 
the spectral results in the limit of the bandwidth of the differenti­
ation matrix being equal with the leading matrix dimension, 
q ^ N. Exploiting the sparsity at q < N, accurate results have been 
delivered at orders of magnitude less storage and serial CPU time 
requirements, compared with the standard spectral collocation ap­
proach based on the (unmapped or mapped) Chebyshev Gauss-
Lobatto grid. This permits a drastic reduction of the computing 
hardware on which state-of-the-art global linear instability analy­
ses are performed when the spatial discretization matrix is stored 
and LU-decomposed. Results obtained demonstrate a memory 
reduction from O(M^) to 0 ( M ' ^ ) , being M the leading dimension 
of the matrix operator, as well as a reduction of CPU time from 
O(M^) to 0 ( M ' ' ) . Subsequently, the usage of FD-q delivers a 
speedup of 0(10"*) and a memory reduction of 0(10^) in the most 
challenging global linear stability calculation made so far using 
matrix formation [24,26], which used spectral collocation methods 
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Fig. 14. (a) Elapsed time for LU-factorization and (b) rescaled CPU-time using the Eq. (32) versus number of discretization points per direction, N + 1 . 



for the spatial discretization. Both improvements permit perform­
ing TriGlobal linear instability analyses on a modern desktop with 
modest computational effort. 

All work performed has focused on regular single-domain dis­
cretization. The question could be raised whether employing spec­
tral multidomain or spectral element discretizations might make 
the CGL method against which the FD-q results have been com­
pared more competitive. Should such a comparison be sought, 
one could speculate that spatial tessellations analogous to those 
employed by the spectral element method could be constructed 
and employed using FD-q spatial discretization, since the limit of 
the latter is spectral collocation. Such an exercise is currently in 
progress and results will be presented in due course. 
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bo = -2.97144896555410, 

bi = b_i = 1.70352228610990, 

bi = b-2 = -0.25915559206280, 

fas = b-3 = 0.04758017242037, 

b4 = b-4 = -0.00671534695761, 

fas = b-5 = 0.00049296326719. 
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Appendix A. Dispersion-Relation-Preserving Finite Difference 
Schemes 

Using the following notation for the first and second derivative. 

f" = VJ, 
(A.1) 

(A.2) 

the matrix formulation for the first and second derivative matrix of 
the DRP scheme of order 8 are given in Eq. (A.3) and (A.4) 
respectively. 

The coefficients for the first derivative matrix Vx in a order 8 
scheme are 

Qo = 0, 

Oi = -a_i = 0.85710439841850, 

02 = -a_2 = -0.2652621696215, 

03 = -a_3 = 0.07480520850713, 

04 = -o_4 = -0.01444845684162, 

05 = -o_5 = 0.00135962853377, 

and for the second derivative matrix !>„ are 

Appendix B. Compact finite difference schemes 

Using the following notation for the first and second derivative 

Af = Bf^f' = A-^Bf, (B.l) 

Af" = Mf^ f" = A-^ Mf, (B.2) 

and taking into account the next relation for simplicity, 
d = -2{b/4 + a), the matrix operators of the Eqs. (B.l) and (B.2) 
for the Pade compact scheme of order 8 are 

A = 

(^ 
0C2 

p 
0 

0 

0 
0 u 

0.1 

1 

a 

/i 

0 

0-2 

1 
a 

0 
0 

a 
1 

0 

0 
0 

p 
a 

P 
0 
0 

0 

0 
0 

0 

p 

a 

P 
0 

0 

0 

1 

a 
0 

0 

a 

1 

12 

0 

p 
a 
1 

Ml 

°\ 
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0 
0 

0 

p 
12 

1 / 



( dw Qii dii du Q M a i5 

020 021 022 023 024 O25 

-b/4 -a/2 0 a/2 b/4 0 

Ol6 

026 

0 

Ol7 

0 

0 

0 

0 

0 

0 

0 

0 

0 

V 0 

-b/4 -a/2 0 a/2 b/4 0 0 0 

0 

0 

0 

0 0 0 -b/4 -a/2 0 a/2 b/4 0 

0 0 0 0 -b/4 -a/2 0 a/2 b/4 

0 0 -a26 -025 -024 -023 -O22 -O21 -O20 

0 -ai7 -ai6 -ai5 - a ^ -ai3 - a ^ - O n -Oio/ 

^mio mil 1112 fTiis mi4 mis mie miy 0 ... 0 \ 

m2o m2i m22 m23 m24 rujs ruje, Q 0 ... 0 

h/A a d a b/4 0 0 0 0 ... 0 

0 b/4 a d a b/4 0 0 0 ... 0 

M = 

0 

0 

0 

V 0 

0 0 0 b/4 a d a b/4 0 

0 0 0 0 b/4 a d a b/4 

0 0 m26 m25 m24 m23 m22 m2i m2o 
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The first derivative coefficients for a Fade compact scheme of order 
8 (see [28] for more details) are 

a = 4 /9 , iS = l / 3 6 , 

and the second derivative coefficients for the same order 8: 

a = 344 /1179 , 
3 8 a - 9 

214 • 

The boundary coefficients follow a special treatment. The formula­
tion for the first and last rows of the first derivative of order 8 is 

ii' + «lii+l=A^E°i^' (B.3) 
j = i 

with 

M 

y^Oj = 0, V'OJL/ = 1 + a, y^Oj/^ = ya-i 

J=o J=o J=o 

where M = 1 and y = 2 ,4 ,6 . The second and last but one rows have 
the next formulation, 

^'-i+i; '+az/; '+i=^E°'^' (B.4) 
j= - l 

with 

M M -y ^ / a J 2a2 
Ea.=0, D-«, = l+2a, 5:^-^ = 0, EVf^To^^ 
j=N j=N j=N y! j=N (<̂  I)! 

where y = 2 ,4 ,6 , ff = 3 ,5 ,7 ,N = - 1 andJVr = 5. 
The formulation for the first and last rows of the second deriv­

ative of order 8 is 

1 M 

with 

(B.5) 
j = i 

M M 

j=0 j=o 

M 

j=0 

= 2(1+a). 
M 

j=0 

- 2ya i , 

(B.6) 

where M = 1 and y = 2 ,4 ,6 . The second and last but one rows have 
the next formulation. 

1 M 

(B.7) 

with 

M M M ;2 

5:mj = 0, 5jm,=0, E S r = ^ 
M 

J mj y^./ '"J 2a2 

j=N 
2! 2a, 

M -V 

yJ-^=o, 

j=N 
( ( 7 -2 ) ! ' 

where y = 3,5,7,ff = 4 ,6 ,N = - 1 andJVr = 5. 
The first derivative coefficients for the finite difference scheme 

of order 8 of the first and last rows are 

Oio = - 5 0 3 / 1 4 0 , a „ = - 6 3 / 2 0 , a ^ = 21 /2 , 

013 = - 3 5 / 6 , 0 1 4 = 3 5 / 1 2 , O15 = - 2 1 / 2 0 , 

Oi6 = 7/30, Oi7 = - l / 4 2 , a i = 7 

and for the second and last but one rows are 

O20 = - 2 0 9 / 3 8 4 , O21 = - 4 9 / 1 2 0 , O22 = 475/384 , 

023 = - 5 / 1 2 , 024 = 65 /384 , O25 = - 1 / 2 4 , 

026 = 3/640, a2 = 5/32. 

In the case of the second derivative with the same order, the coef­
ficients of the first and last rows are 

mio = 3 6 4 7 / 2 6 1 , m n = - 1 1 8 1 8 / 4 3 5 , mi2 = 5889/580 , 

mi3 = 7 0 3 1 / 1 0 4 4 , mi4 = - 9 7 3 / 1 7 4 , mis = 141/58 , 

mi6 = - 3 1 1 9 / 5 2 2 0 , miy = 113/1740, a i = 363 /29 , 

and the second and last but one rows are 

m2o = 585/512 , m2i = - 1 4 1 / 6 4 , m22 = 459 /512 , 

m 2 3 = 9 / 3 2 , m24 = - 8 1 / 5 1 2 , m25 = 3 /64, 

m26 = - 3 / 5 1 2 , a2 = 11 /128 . 
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