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Acoustic signal processing with robust machine learning algorithm for improved monitoring of 

particulate solid materials in a gas pipeline 

The flow of particulate solid materials in a gas pipeline can significantly erode mechanical equipment, 

and hence, real-time quantitative monitoring is a timely need for the oil and gas industry. Although a 

considerable amount of research has been conducted employing acoustic signals for qualitative 

monitoring, there is still an unmet demand for a simple and robust quantitative monitoring system. 

Acoustic signal processing with machine learning is a simple and robust method that has the potential 

to meet this demand, but has not been previously used for particulate solid material quantitative 

monitoring. Here we report on the development of acoustic signal processing methods strictly on the 

existence and the significance of the correlation between emitted acoustic signals and the flow 

conditions and behaviours of particle-laden gas pipeline. The integrated, conventional Artificial 

Neural Network (ANN) models are used to capture the distribution of the acoustic feature vectors 

extracted from the signal processing techniques. The backpropagation learning method coupled with 

Grey wolf optimiser is used to adjust the weights of the network to minimize the regularized cost 

function for each feature vector. The Grey wolf optimiser is used to provide global adaptation strategy 

for the network hyper-parameters. The results from the signal processing techniques demonstrate a 

significant qualitative association between flow conditions and the emitted acoustic signature. Further, 

conventional ANN has mainly been concerned with capturing systematic patterns in a distribution of 

measurements fixed in time and the results of the processes are collected in discrete time intervals. 

Therefore, a modification of the classical ANN, called the Time Delay Neural Networks (TDNN) is 

used to capture such dynamics. The proposed method compares the performance of the classical ANN 

models with the TDNN models wherein the feature vectors were used to train the TDNN models. 

Results show that the TDNN models outperform the classical ANN models which confirm the fact 

that classical ANN models are insufficient for processing these time sequences. Overall, this study 

lays the basis for employing signal processing techniques in the development of a real-time 

quantitative particulate solid monitoring in a gas pipeline. 

Keywords: 

Acoustic signal processing, Grey Wolf Optimiser (GWO), Neural Networks, Time-Delay Neural 

Networks (TDNN), condition monitoring 

1 Introduction 

In general, particulate solid material flow in a pipeline with hydrocarbon fluid remains one of the key 

technical challenges to the operators in the oil and gas industry. It can cause damage to equipment 

through erosion, increasing the risk to maintaining mechanical integrity of the equipment and 

additional costs due to expensive parts replacements and machine downtime[1][2]. In recent years, the 

increasing trends towards increased oil and gas production particularly in the power industry [3] for 

continued power generation has increased operating pressures and, therefore, has resulted in more 

particulate solids in the pipeline. Hence, real-time monitoring of particulate solid material presence in 

the flow path is a timely need. The aim of implementing a quantitative monitoring system is to 

achieve uninterrupted production (flow assurance) and curtail its adverse consequential effects. 

However, most recent techniques for monitoring solid particulate material in hydrocarbon pipeline 

rely on visualisation of acoustics emitted by solid particles impacting on the walls of the bend 

component where the sensors were mounted. These methods only provide qualitative information 

about the flow conditions in the pipeline and cannot provide information on how much solids particles 
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are in the pipeline. Hence, it is a significant requirement to have a system for real-time quantitative 

monitoring of solid particles that can provide quantitatively, the flow conditions in the pipeline.  

Torbjoern, H. [4] presented a comprehensive review on the lessons learned from sensing and online 

monitoring  of particulate solid materials in a production pipeline using acoustic sensors - from the 

many years of operation. Other earlier research articles provide evidence of significant progress in this 

area [5][6][7][8], but still demonstrate the current need for reliable techniques of flow condition 

monitoring system. However, surface monitoring using ‘point’ sensors has been the most popular, to 

date, the use of fibre optic Distributed Acoustics Sensors (DAS) is common [1][9]. Although the 

traditional monitoring system provide a delayed indication of onset of particulate solid materials 

events and do not provide sufficient information about the zones that are producing the effect, DAS 

has been considered as an alternative technology for downhole particulate solid materials detection. 

Fibre optic DAS are acoustic sensing systems that employ the backscatter component of the light 

injected into an optical fibre for detecting acoustic perturbations along the length of the fibre. It 

monitors changes in the length and index of refraction of the fibre caused by impacting acoustic 

signals. In effect, the fibre works similar to a distributed array of microphones broadcast over the 

entire length of the borehole sensing downhole acoustics[1]. Despite this research, there is still an 

unmet demand from the oil and gas industry for a robust quantitative monitoring system which is 

capable of providing reliable data in the critical area of flow assurance. 

Acoustic signal processing with integrated machine learning algorithm has a higher potential to meet 

this demand. In fact, acoustic signal processing techniques developed for flow conditions recognition 

is characterised as being knowledge-based approach [10]. On this premise, a sample data is used to 

train models in advance to identify future data by means of optimisation-oriented approaches. 

Disregarding the above-mentioned characterisation, it is, however, important to note that relevant 

information for the recognition may be hidden in the raw signal data. Therefore, an intermediary step 

that converts the “curse of dimensionality” of the signal of interest to information of reduced and 

predefined lengths is always required. This is known as the feature extraction step and the resulting 

operations are called feature vectors. The direct significance is that, the more the features preserve the 

information required from the acoustic signal, the greater are the results of the recognition [10]. 

Therefore, signal processing serves the purpose of determining the features needed to construct the 

recognition models and to confirm the models constructed to represent the phenomena. Nevertheless, 

the signal data, most likely will have a particular problem that require specific speciality in the 

analysis. 

Real world signals are represented not over an information known a priori and are generally 

represented based on their probabilistic statistics which can vary over time. As a result, such signals 

possess nonlinear and nonstationary characteristics. The case is true for acoustic signals where the 

instantaneous frequency and hence the spectral content changes within the signal duration[11]. Recent 

trends in research of nonstationary signals reveal that time or frequency domain only analysis are not 

sufficiently adequate to describe the characteristics of these signals due to the time-varying nature. 

Therefore a joint time-frequency analysis would be a better approach in an attempt to adequately 

process the signals. Traditionally, spectral analysis based on Fourier technique has been generally 

applied to all kinds of signals to provide global information concerning the spectral content of the 

signals. This is partly due to its simple mathematical prowess. However, despite its general validity, 

there are some caveats: the signals must be strictly stationary; and the system represented must be 

linear; otherwise the time occurrences of the spectral information will remain unclear[11][12]. Most 

methods aimed at processing nonstationary signals are in one way or the other relying on the 

application of Fourier analysis. Such methods, however, can have some additional shortcomings. For 
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example, the spectrogram (Short Fourier Transform) is too coarse due conflicting requirements in 

localizing an event in time or frequency domain; the wavelet analysis is not adaptive being sensitive 

to gradual frequency changes; the evolutionary spectrum requires a unique technique to define the 

basis function a posteriori[12]; the Wigner – Ville distribution often introduce negative energy for 

some frequency ranges[13].   

In order to overcome these challenges and effectively process the acoustic signal, feature 

representations of audio signals previously developed for music and speech processing applications 

were needed to describe the evolution of the signal in the time and frequency domain. The key to this 

approach is to presume that on short time scales (usually in the range of milliseconds), the signal is 

stationary. Although this assumption has provided an important basis for the feature extraction 

process, its justification in nonstationary signals is not always readily available[14]. In this study, 

several techniques were developed/employed for signal processing based on discrete fourier transform 

analysis (DFT), cepstrum and Hilbert Huang Transform (HHT). Additionally, Artificial Neural 

Networks (ANNs) have been used in the decision making phase. However, there is a lack of 

techniques in classical ANN which consider the temporal dynamics in the feature vectors. This point 

is crucial impediment to the performance of the classical ANN. Instead, a time delay neural network 

(TDNN) is used in the decision making phase. 

This paper provides the first step towards the aim to develop a real-time quantitative solid particulate 

material monitoring system. Glasgow Caledonian University’s multiphase flow loop facility was used 

for the experiments. The concentration and the velocity of the solids were varied during the 

experimental trials. Conventional contact microphone mounted externally to a pipeline bend was used 

for recording the emitted acoustic. The output from the sensor processed using different signal 

processing techniques and the observations are discussed in correlation with the concentration of 

particulate solid materials that are quantitatively observed in the pipeline via several measurements.  

The overall contribution of this study can be highlighted as follows: 

i. Development of signal processing methods to study flow behaviours and conditions in 

particle-laden gas pipeline wherein to the author’s best knowledge, no work in the literature 

has examined the use of such techniques for quantitative monitoring. 

ii. Application of classical ANN with swarm intelligence (Grey wolf optimiser) based 

optimisation method for improved performance of the learning algorithm and then onto 

TDNN, to capture the array of features extracted from i. 

iii. The new metric, normalized root mean square error is introduced to compare the performance 

of the different flow pattern condition recognition models. 

The remainder of this paper is organised as follows. Section 2 explains the experimental setup, 

materials, and the data acquisition setup used for the experiments respectively. Furthermore, details of 

the experimental measurement procedure are presented in the section. Section 3 presents the 

development of the signal processing techniques and the details of the feature extraction methods used 

as preprocessing step. Section 4 describes the classical ANN in general and the TDNN. The results 

obtained by the application of the proposed techniques and the machine learning models are presented 

in section 5. Section 6 provides a discussion of the results and the concluding remarks drawn from the 

studies and future work are in section 7. 
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2 Experimental outline 

This experiment was designed to determine if acoustic signal processing could be employed to detect 

the concentration of solid particulate materials in a particle-laden gas pipeline. The experimental 

objectives of the experimental design were two fold; first closely simulate the real reservoir 

conditions by injecting concentrations of particulate materials into the pipeline; second generate a 

series of different solids concentrations in the pipeline. 

2.1 Experimental set up  

The experiments were conducted using the GCU multiphase flow loop facility, as shown in Figure1. 

The pipeline layout in the loop was of mild steel internal diameter approximately 50 mm, with total 

length of around 12 m. The majority of the pipeline layout was in the horizontal plane and included 

four 90 degree standard radius bends. The acoustic recording sensor was positioned at the bend. The 

tests were carried out with flow conditions having solid concentrations in the order of 3 to 44 by mass. 

The gas flow to a sand feeder and transport line was achieved using a nozzle bank and an upstream 

pressure control valve. The mass flow rate of solids was measured using the change in mass signals 

from the load cells at the reception tank. The location of the acoustic sensor is illustrated in Figure 2. 
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 Figure 1 Multiphase flow loop schematic diagram 

2.2 Materials 

The solid material used for the experiments is the Garside 2EW sand. This sand has an average 

particle size of 360.18 μm and its size distribution spread between 60 μm and 2000 μm. In this case, 

the gas used is a compressed air supplied by two screw compressor.  The compressors were capable of 

delivering approximately 0.123 m
3
/s of free air with maximum steady pressure of around 7.5 barg. 
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2.3 Data acquisition setup 

The signals emitted by different solid concentrations contribute to the acoustics employed in the 

preprocessing stage. These signals have been conditioned by a signal conditioning circuit and thus 

have sufficient signal strength. The complete setup consists of: four contact microphones mounted on 

the four bends; four single ended pressure transducers to record the pressure at various locations 

within the layout; a temperature sensor mounted upstream to record the gas temperature; three load 

cells installed on the reception tank to measure the solid mass flow rate; national instruments USB-

6211 and USB-6212 data acquisition systems – UBS-6212 for the microphones and USB-6211 for the 

other sensors; HP laptop with National Instruments Signal Express software.    

The microphone location presented in Figure 2 was chosen based on the assumption that the solid 

particles provide the highest kinetic energy at the bend location compared to the straight section. Data 

was collected at a rate of 44100 Hz. 
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. .
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.  .  .
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. . . . 

.  
.  
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Particle flow

 

Figure 2 Location of the Acoustic sensor 

2.4 Methodology for the experimental measurement 

The procedure implemented to measure the solid concentration, solid flow rate, gas velocity and the 

total line pressure drop is discussed in this section. Sand concentration is determined using equation 

(1). In equation (1), �̇�𝑠 denotes the mass flow rate of sand and �̇�𝑔 denotes the total mass flow rate of 

gas. Figure 3 illustrates different sand concentrations in the pipeline. 

 𝑠𝑎𝑛𝑑 𝐶𝑜𝑛𝑐 =  
�̇�𝑠

�̇�𝑔
 (1) 

However, the sand flow rate is calculated from the test data at steady line pressure using Equation (2) 

 �̇�𝑠 = 
𝑠𝑎𝑛𝑑 𝑚𝑎𝑠𝑠 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 (𝑘𝑔)

𝑇𝑖𝑚𝑒 (𝑠)
 (2) 

The gas at the transport line can be determined during the test run using the gauge pressure at the 

supplementary and the temperature measured upstream of the nozzle bank. Since the pressure acting 

on the sand particles in the transport line is in absolute unit, then the Equation (3) can be used to 

calculate the gas velocity. 
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𝑉𝑔𝑎𝑠 = 

�̇�𝑔

(𝑃𝑔𝑢𝑎𝑔𝑒 + 1.01325 𝑏𝑎𝑟)
𝑅𝑇

 ∙ 𝐴

 
(3) 

 

The total transport line pressure drop is assumed to be pressure difference between the transport line 

and the reception tank presented by Equation (4) 

 ∆𝑃𝐿𝑖𝑛𝑒 = 𝑃𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝐿𝑖𝑛𝑒 − 𝑃𝑅𝑒𝑐𝑒𝑝𝑡𝑖𝑜𝑛 𝑡𝑎𝑛𝑘 (4) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Different sand concentrations in the pipeline 

3. Signal Processing 

The flow behaviour and flow conditions of particle-laden gas pipeline would, in general, generate 

acoustics as the particles hit the bend component of the pipeline. Hence, several signal processing 

techniques were employed to extract relevant features from the acoustic signal in order to study the 

association between the solid characteristics data in the pipeline and the acoustic emissions. The 

following section presents the development of feature the extraction techniques. 

3.1 Structure for feature extraction techniques 

On the basis of nonstationary characteristics of the acoustic signals, it is therefore presumed that on 

short-time scales the signals are stationary. Based on this assumption, the feature extraction process 

was decomposed to form a structure for sequential mathematical operations that could lead to a more 

compact feature computation. The basic outline of the structure can be seen in Figure 4. 
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Figure 4: Sequence for feature extraction process 
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The first component of the structure is the block for pre-processing of the acoustic signal. Here the 

original signal is first decomposed into a small number of frames in sequence. In practice, frame 

duration of 10 – 30 ms is usually selected to provide a meaningful frequency and time resolutions. 

Although there is always uncertainty in short -time processing, this interval has been found to be 

practical[15]. Next, windowing function is applied on each frame to reduce spectral distortions due to 

discontinuity at the edges of the frame[16]. Many windowing functions have been developed for 

truncating and shaping signal frames for spectral analysis, but by far, the hamming window is the 

most common one. It is simple interms of implementation, computationally efficient and guarantees 

good result[14]. The hamming window ℎ(𝑛), is defined as 

 ℎ(𝑛) =  {
0.54 − 0.46𝑐𝑜𝑠 (

2𝜋𝑛

𝐿 − 1
) ,               0 ≤ 𝑛 ≥ 𝐿 − 1

0                                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 (5) 

 

where L denotes the frame length. This window function simply shrinks down the frame amplitudes to 

zero at the boundaries. Normally, the windows are time shifted to tackle the problem of significant 

information losses near the edges of the frame. In particular, if the signal is analysed in frames, 

information lost at the edge of a frame can be collected between the confines of the following frame. 

Furthermore, the features extracted following this short-time processing are commonly called short-

time features [17][14]. 

Signal transforms are used to map the representation of the signal from one domain to another. The 

goal is to change the original interpretation of the signal into a form that could be useful for feature 

extraction processes. Although different signal transforms can be used to accomplish such mapping, 

however, the most relevant ones are presented here as follows. 

3.1.1 Discrete Fourier Transform (DFT) 

The Discrete Fourier Transform (DFT) is an increasingly important concept in digital signal 

processing applications including frequency analysis of signals. This is not surprising, then, given the 

existence of computationally efficient and powerful algorithms for its evaluation. And it is used to 

provide frequency domain representation of signals[18][19]. The theme of spectral features is 

essential and has considerable impact on characterizing and analysing the acoustic contents. For this 

reason, understanding the mathematical structure of DFT is critical. To obtain the frequency 

distributions of a given discrete –time signal {𝑥(𝑛)}, the signal is first sampled in the frequency 

domain to construct the Fourier transform sequence 𝑋(𝑤). However, 𝑋(𝑤) is a continuous function 

defined at infinite frequencies and therefore is not numerically computable. Instead, the Fast Fourier 

Transform (FFT) algorithm is commonly used to exploit the numerical challenges and efficiently 

compute the DFT and its inverse. 

Consider a discrete-time signal {𝑥(𝑛)}, of length N defined by 0 ≤ 𝑛 ≤ 𝑁 − 1: {𝑥(𝑛)} = 0 outside 

the interval, then the DFT sequence is given as: 

 𝑋(𝑘) =  ∑ 𝑥(𝑛)𝑒
(−𝑗

2𝜋
𝑁
𝑘𝑛)

𝑁−1

𝑛=0

,               0 ≤ 𝑘 ≤ 𝑁 − 1, (6) 

 

where 𝑋(𝑘) is a sequence of frequency samples obtained by evaluating the Fourier transform 𝑋(𝑤) at 

N equally spaced discrete frequencies. Recall the Euler’s relationship: 𝑒𝑗𝜔𝑡 = cos𝜔𝑡 + 𝑗 sin𝜔𝑡 and 
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the implication of this is that the outputs of the DFT are complex variables. Thus the magnitude and 

hence the energy of each of the frequency bin in the spectrum can be obtained by multiplying the 

respective complex variable by its conjugate. However, in order to recover the original signal 

sequence 𝑥(𝑛) from the frequency samples, the relation   

 𝑥(𝑛) =  
1

𝑁
∑ 𝑋(𝑘)𝑒

(𝑗
2𝜋
𝑁
𝑘𝑛)

𝑁−1

𝑛=0

,               0 ≤ 𝑛 ≤ 𝑁 − 1, (7) 

 

is used and is called the inverse DFT (IDFT). Clearly, if the signal sequence 𝑥(𝑛) is sampled at a 

rate 𝑓𝑠, then the bin frequency in hertz corresponds to 𝑓𝑘 =  𝑘
𝑓𝑠

𝑁
, 0 ≤ 𝑘 ≤ 𝑁 − 1 with minimum 

separation between successive frequency bins of  
𝑓𝑠

𝑁
. The term  

𝑓𝑠

𝑁
 is known as the frequency resolution 

of the DFT. For a given sampling frequency, if the desire is to have better frequency resolution, then 

the sequence 𝑥(𝑛) can simply be expanded by appending zeros to it, that is, zero padding. It should be 

pointed out that zero padding does not alter the original form of the sequence but simply refines the 

sampling of the spectrum already in place [18]. 

3.1.2 Hilbert-Huang Transform (HHT) 

Unlike the Fourier transform, the Hilbert transform provides the instantaneous frequency energy 

distributions with time localities[12]. It is, therefore, an orthogonal and adaptive time-frequency 

analysis method for nonlinear and nonstationary signals. The HHT involves two steps. First, the 

empirical mode decomposition (EMD) technique is applied on the signal from which the local 

embedded oscillations known as the intrinsic mode functions (IMFs), and a residual understood as the 

signal trend are extracted. Once the IMFs are extracted, then the next step is to apply Hilbert 

transform on each of the IMF component. Following this, the Hilbert spectrum is obtained. The 

empirical decomposition is an iterative procedure known as the sifting process and is based on the 

simple assumptions: the signal has at least one maximum and one minimum; and that the time scale 

property is defined by the time reversal between extrema. More importantly, each of the resulting 

IMFs must satisfy two requirements: on the whole signal, the number of extrema and the number of 

zero crossings must either equal each other or differ at most by one; and at any point, the average of 

the envelope defined by the local maxima and that defined by the local minima is zero. The first 

requirement is analogous to the conventional narrow band conditions for stationary Gaussian process. 

The second requirement qualifies global condition to a local one, which is needed so that the 

instantaneous frequency will circumvent false images introduced by riding waves. The first 

component of the IMF extracted usually represents the highest frequency constituent of the signal, 

whereas the lower frequency bands are described by the lower order IMFs [12][20][21]. 

The systematic decomposition of the signal, often designated sifting process, undergoes multiple 

analytical steps which are successively described as follows[21][12]. For a given signal 𝑥(𝑡), first, 

identify all the local maxima and local minima. Then interpolate the local extrema via cubic spline to 

obtain the upper envelope 𝑥𝑚𝑎𝑥(𝑡) and the lower envelope 𝑥𝑚𝑖𝑛(𝑡) of the original signal. Compute 

the mean 𝑚1(𝑡) of the envelopes using the relation:  

 𝑚1(𝑡) =  
𝑥𝑚𝑎𝑥(𝑡) − 𝑥𝑚𝑖𝑛(𝑡)

2
 (8) 

Subsequently, subtracting the mean 𝑚1(𝑡)  from the original signal 𝑥(𝑡) yields: 
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 𝑥(𝑡) − 𝑚1(𝑡) =  ℎ1(𝑡) (9) 

Classically, ℎ1(𝑡) will be an IMF component which is likely to satisfy all the conditions of IMF. 

However, in reality unwanted fluctuations are apparent. This results in new extrema and a shift or 

exaggeration on the existing ones. Repeating the above procedure, the sifting process k times until the 

average envelope approaches zero, so that ℎ1(𝑡) qualifies to be an IMF component of the signal 

designated as: 

 ℎ1(𝑘−1)(𝑡) − 𝑚1(𝑡) =  ℎ1(𝑡),     𝑐1(𝑡) =  ℎ1𝑘(𝑡) (10) 

It is worth noting that this iterative procedure can in fact remove riding waves and smooth uneven 

amplitudes. In addition, to preserve the physical sense of the meaningful amplitude fluctuations, a 

stopping criterion for the sifting process is usually defined. Next, the first residue 𝑟1(𝑡) is obtained via 

𝑟1(𝑡) =  𝑥(𝑡) − 𝑐1(𝑡) and treated as the new signal. Repeat the sifting process on subsequent residual 

𝑟𝑗(𝑡) until no further IMF can be extracted and the results is  

 𝑟1(𝑡) − 𝑐2(𝑡) =  𝑟2(𝑡), … 𝑟𝑛−1(𝑡) − 𝑐𝑛(𝑡) = 𝑟𝑛(𝑡) (11) 

where 𝑟𝑛(𝑡) represents the signal trend which is monotonic and hence no IMF can be extracted, and 

𝑐𝑛 is the n
th
 IMF component. Finally, the original signal 𝑥(𝑡) can be exactly reconstructed in terms of 

the linear combination of IMFs and residue: 

 𝑥(𝑡) =  ∑𝑐𝑖(𝑡) + 𝑟𝑛(𝑡)

𝑛

𝑖=1

 . (12) 

Subsequently, applying the Hilbert transform on each of the IMF gives the following relation 

 𝐶𝑖(𝑡) =
1

𝜋
𝑃∫

𝑐𝑖(𝜏)

𝑡 − 𝜏

+∞

−∞

𝑑𝜏 (13) 

where P denotes the Cauchy principal value of the integral. With this definition, the complexification 

of 𝐶𝑖(𝑡) and 𝑐𝑖(𝑡) gives the analytic signal, 𝑍𝑖(𝑡)  as 

 𝑍𝑖(𝑡) =  𝑐𝑖(𝑡) + 𝑗𝐶𝑖(𝑡)  =  𝑎𝑖(𝑡)𝑒
𝑗𝜃𝑖(𝑡) (14) 

The instantaneous amplitude 𝑎𝑖(𝑡) and the instantaneous phase 𝜃𝑖(𝑡) are determined from: 

 𝑎𝑖(𝑡) =  √𝑐𝑖
2(𝑡) + 𝐶𝑖

2(𝑡)        𝜃𝑖(𝑡) = 𝑡𝑎𝑛
−1 (

𝐶𝑖(𝑡)

𝑐𝑖(𝑡)
) . (15) 

Accordingly, the instantaneous frequency of the analytical signal can be obtained from the first 

derivative of the phase 𝜃𝑖(𝑡) 

 𝑓𝑖(𝑡) =  
1

2𝜋

𝑑𝜃𝑖(𝑡)

𝑑𝑡
 . (16) 

In terms of the instantaneous frequency, the original signal 𝑥(𝑡) can be expressed as 

 𝑥(𝑡) = 𝑅𝑒 (∑𝑎𝑖(𝑡)𝑒
𝑗2𝜋∫𝑓𝑖(𝑡)𝑑𝑡

𝑛

𝑖=1

) (17) 

In addition, the energy of each IMF 𝐸𝑖 and the total energy E of the signal 𝑥(𝑡) are calculated from 

the equation 

 𝐸𝑖 = ∫ |𝑐𝑖(𝑡)|
2

∞

0

𝑑𝑡              𝐸 =  ∫ |𝑥(𝑡)|2
∞

0

𝑑𝑡 (18) 

The energy contribution of each of the IMF,  𝐸𝐶𝑖, is therefore obtained from 
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 𝐸𝐶𝑖 = 
𝐸𝑖
𝐸

 (19) 

3.1.3 Discrete Cosine Transform (DCT) 

The discrete cosine transform is yet another promising technique widely and extensively used in 

signal processing applications due to its non-complex nature. This implies a useful property that the 

DCT coefficients are purely real. Unlike DFT, the DCT expresses a signal as an aggregate of cosine 

functions of different amplitudes and frequencies. However, despite this distinction, both operate on a 

signal sequence of finite number discrete data points [18][19]. 

Given a sequence of discrete-time signal 𝑥(𝑛) defined at discrete points N such that 0 ≤ 𝑛 ≤ 𝑁 −

1then its corresponding DCT is given as 

 𝑋𝐷𝐶𝑇(𝑘) =  𝛼(𝑘)∑ 𝑥(𝑛)

𝑁−1

𝑛=0

cos(
𝜋𝑘(2𝑛 + 1)

2𝑁
) , 0 ≤ 𝑘 ≤ 𝑁 − 1 (20) 

However, to reconstruct the sequence 𝑥(𝑛) from the generated N-point DCT 

coefficients, 𝑋𝐷𝐶𝑇(𝑘), 0 ≤ 𝑘 ≤ 𝑁 − 1, the inverse discrete cosine transform (IDCT) is used and is 

given by the following equation 

 𝑥(𝑛) =  ∑ 𝛼(𝑘)𝑋𝐷𝐶𝑇(𝑘) cos (
𝜋𝑘(2𝑛 + 1)

2𝑁
)

𝑁−1

𝑘=0

, 0 ≤ 𝑘 ≤ 𝑁 − 1 (21) 

where 

 𝛼(𝑘) =

{
 
 

 
 
√
1

𝑁
𝑘 = 0,

√
2

𝑁
            1 ≤ 𝑘 ≤ 𝑁 − 1.

 (22) 

The DCT has also been popular in other applications including image compression due to its 

computational efficiency [18]. In this work, DCT is employed to decorrelate sand concentration signal 

log spectra in mel-frequency analysis so that useful features can be extracted from the signal. 

3.1.4 Aggregations 

For better a description of feature dynamics, the notion of individual short-term features becomes 

meaningless, and hence a sequence of short-term features is needed. According to this type of 

processing, the sequence of short-term features is called the mid-term segment and a signal could 

have several segments. In practice, however, the duration of mid-term segment typically falls in the 

range 1 – 10 s and is based on the assumption that within the interval, the segments exhibit like 

behaviour[15]. Therefore aggregation of features over each of the segment using simple summary 

statistics (such as mean, median, maximum and minimum) can capture the dynamism of features that 

best describe the characteristics of the signal. Moreover, it can enhance classifier performance over 

directly working on the short-term features. The reason is that the series of feature values in the 

sequence is being mapped onto a scalar value. Hence aggregation on its own can be seen as an 

important element in the data reduction procedure. In general, the successful execution of the just 

described structure for feature extraction could result in a feature vector that is compact and complete 

with high discriminant power[17][22]. 
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Often, in the process of extracting features, it is the domain of the feature that determines the 

interpretation of the feature data and provides a useful indication about computational requirements. 

The domain of the feature is the depiction that a feature exists in after extraction. Therefore, the r the 

time and frequency domains are considered in the acoustic feature extraction process. 

3.2 Time-domain features extraction 

In the application of acoustic signal prediction, the time-domain is important; it describes the signal 

waveform directly as well as the features extracted. Typical examples of short-term features in this 

domain include: energy and zero-crossing rate. Although time-domain features provided meaningful 

information about the signal, it is important to note that they are not sufficient for characterization of 

the signal. Instead a combination of them with the state-of-the- art frequency domain features is used 

to provide the needed characterization for ensured predictive accuracy. Additionally, the time-domain 

is the basis from which features from other domains are derived from the signal. The sections that 

follow attempt to briefly describe some of the most commonly used time domain features.  

3.2.1 Short-Term Energy 

According to the classical definition, the energy of a signal describes its capacity to perform work 

[10]. In order to apply the concept of energy in the analysis of sand concentration acoustic signal, it is 

necessary to bring the notion of ‘impingement’ into considerations so that the concept of energy is 

applicable. Thus the energy of sand acoustic signal relates to the impingement of the sand particles 

with the bend, which could be due to particle concentration, flow velocity and gas pressure [23]. All 

these factors tend to significantly affect the signal amplitude which in turn dictates the energy of the 

signal. The short- term energy of the signal is given by 

 𝐸(𝑖) =  ∑ 𝑥𝑖(𝑛)
2

𝑊𝐿−1

𝑛=0

 , (23) 

being 𝐸(𝑖) and 𝑥𝑖, respectively, the energy and the sequence of amplitudes of the i
th
 frame, with 𝑊𝐿 

representing the width of the window. For convenience, the energy is normalized to eliminate 

dependency on the frame width by simply dividing it with 𝑊𝐿 , and the relation becomes 

 𝐸(𝑖) =
1

𝑊𝐿
 ∑ 𝑥𝑖(𝑛)

2 .

𝑊𝐿−1

𝑛=0

 (24) 

Based on equation (23), the short-term energy can be defined as the mean energy per frame which is 

actually considered as a measure of frame signal power with respect to sand particles impact[24]. 

Similarly, using equation (21), the energy contribution of the first - two higher frequency constituent 

of the signal is calculated and included in the response feature vector. 

3.2.2 Zero-crossing rate (ZCR) 

For a given signal frame, zero crossing rate is a weighted time – domain crossings within the frame i.e 

the number of times the signal changes sign within the frame [25]  and its mathematical definition is 

 𝑍𝐶𝑅(𝑖) =  
1

2𝑊𝐿
∑ |𝑠𝑖𝑔𝑛[𝑥𝑖(𝑛)] − 𝑠𝑖𝑔𝑛[𝑥𝑖(𝑛)]|

𝑊𝐿−1

𝑖=0

 (25) 

and it follows that 
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 𝑠𝑖𝑔𝑛[𝑥𝑖(𝑛)] = {
1, 𝑥𝑖(𝑛) ≥ 0,

−1, 𝑥𝑖(𝑛) < 0.
 (26) 

The ZCR is simple and cheap in terms of computational complexity. Conventionally, the ZCR 

correlate with the spectral behaviour of the signal under analysis [10]. This is true for narrowband 

signals, but for broadband signals like the sand concentration signals the interpretation of zero 

crossing rate is much less accurate and therefore approximate spectral characteristics can be obtained 

using representation based on the short-time zero crossing rate. In addition, the ZCR can also be 

interpreted as a metric for randomness [15].  

3.2.3 Energy Entropy 

The energy entropy is a feature used to detect sudden changes in the energy level of a signal due to 

sand particles/inner wall/gas interactions at the bend. For the computation of the energy entropy[15], 

the signal frame is distributed among K sub-frames of equal duration. Next, the energy contribution of 

each sub-frame, 𝑒𝑗 , 𝑗 = 1,2,… , 𝐾, is computed using the relation given in equation (29). The idea is to 

create a sequence of K independent variables within the signal frame defined by a certain probability 

distribution. 

 𝑒𝑗 = 
𝐸𝑠𝑢𝑏−𝑓𝑟𝑎𝑚𝑒 𝑗

𝐸𝑓𝑟𝑎𝑚𝑒
 , (27) 

with 𝐸𝑠𝑢𝑏−𝑓𝑟𝑎𝑚𝑒 𝑗 , denoting the energy of j
th
 sub-frame and 𝐸𝑓𝑟𝑎𝑚𝑒 , representing the total energy of 

the frame. Finally, the Shannon entropy[26] is applied on the sequence in an attempt to characterize 

the unpredictability of the frame signal energy. For the sub-frame energy sequence, 𝑒𝑗, the energy 

entropy is obtained by: 

 𝐸𝐸(𝑖) =  − ∑𝑃𝑗(𝑒𝑗)

𝐾

𝑗=1

 log2 (𝑃𝑗(𝑒𝑗)) . (28) 

By equation (30), 𝑃𝑗 is the probability of the j
th 

component in the energy sequence and has been 

estimated by dividing j
th 

component in the sequence with the total frame energy. Conceptually it is 

interpreted as a measure of uncertainty/disorder in a system for larger values[27]. Physically, it has 

meaning on the detection of sudden changes in the energy magnitude within a signal frame for lower 

values. The intuition is that, if one of the sub-frames gives a high energy value, then it implies that the 

probabilities will not be equal and the entropy is decreased resulting into a lower value[15].    

3.3 Frequency-domain features extraction 

Understanding the spectral structure of a signal will provide a strong basis for characterization among 

the different responses. However, to uncover the spectral distribution of a discrete-time (sampled) 

signal, the DFT has become the most commonly used algorithm due to its representational and 

computational advantages. The output of the DFT simply provides the frequency bins present in the 

signal and associated energies following which the spectrum is obtained. Sequel to that, features that 

give important information about the spectral characteristics of the signal are computed from the 

spectrum. Therefore, we give, as follows, a brief description of the so-called spectral features that 

have proved meaningful in practice when analysing the spectrum of signals purely for discriminatory 

purposes. Note: for simplicity and notational convenience, let 𝑊𝑓𝐿 be the number of frequency bins 

(similar to the numeric samples of 𝑊𝐿 in the time domain) in the mathematical representation of the 

features. 

3.3.1 Spectral Centroid (SC) 
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The spectral centroid of an acoustic signal frequency spectrum reflects the center where most of the 

energy in the frequency distribution is concentrated. It indicates whether the spectral structure of the 

signal contains a generality of low or high frequencies, respectively [28][29]. The spectral centroid of 

the i
th
 signal frame is computed as seen in equation (31) 

 𝑆𝐶(𝑖) =  
∑ 𝑘.
𝑊𝑓𝐿−1

𝑘=0
|𝑋𝑖(𝑘)|

∑ |𝑋𝑖(𝑘)|
𝑊𝑓𝐿−1

𝑘=0

 (29) 

where k is the frequency bin for the corresponding frame. Obviously, a large SC values signifies that 

the spectrum is dominated by high frequencies whereas a small SC values shows that the spectrum is 

dominated by low frequencies. 

3.3.2 Spectral Spread (SS) 

Unlike the spectral centroid, the spectral spread provides a metric about the shape of the spectrum. In 

other words, is a measure that is used to describe whether the spectrum is concentrated in the 

proximity of its centroid or it is simply disperse over the spectrum[15][17]. Its mathematical 

definition is given in equation (32) 

 𝑆𝑆(𝑖) =  √
∑ (𝑘 − 𝑆𝐶(𝑖))

2
𝑋𝑖(𝑘)

𝑊𝑓𝐿−1

𝑘=0

∑ |𝑋𝑖(𝑘)|
𝑊𝑓𝐿−1

𝑘=0

 . (30) 

Though the signal has broadband instinct, still the spectral spread can provide meaningful correlation 

between different responses even when they have different power spectrum. In practice, the spectral 

centroid and the spectral spread are usually normalized in the range [0, 1], simply by dividing their 

resulting values with  
𝑓𝑠

2
 .  

3.3.3 Spectral Entropy (SE) 

The spectral Entropy (SE) is a feature used to capture the degree of irregularity in the signal spectrum. 

It is also a measure that relates with the peakiness/flatness of the spectrum[30][31]. From the 

computational perspective, the spectrum of the short-term frame is divided into K non-overlapping 

sub-bands. The spectrum in each of the j
th
 sub-band,  𝑗 = 0,… , 𝐾 − 1 is then normalized by the full-

band spectrum to obtain the probability function. For the sub-band normalization, the relation in 

equation (33) is utilized [32]. 

 𝑠𝑗 = 
𝑆𝑗

∑ 𝑆𝑗
𝐾−1
𝑗=0

 , (31) 

being 𝑆𝑗  and 𝑠𝑗 the energy of the j
th 

 sub-band and the probability function (i.e the normalized sub-

band spectral energy) respectively. The entropy is then computed using the normalized spectral 

energy 𝑠𝑗 according to the equation: 

 𝑆𝐸(𝑖) =  −∑ 𝑠𝑗

𝐾−1

𝑗=0

. log2(𝑠𝑗). (32) 

Nevertheless this sub-division, equation (34) gives the full-band entropy for the signal frame [32]. Its 

value is low for a flat frequency distribution and high for a spectrum with sharp peaks. 
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3.3.4 Spectral Flux (SF) 

The spectral flux is a basic measure for sudden detection of changes in the signal spectral structure 

overtime. That is, the spectral flux captures the variation of the spectrum between two adjacent frames 

in the signal. Mathematically, it is the normalized difference vector of the frame-to-frame spectral 

magnitude [33][34] given by 

 𝑆𝐹(𝑖) =  ∑ {𝐻(𝑋𝑖(𝑘) − 𝑋𝑖−1(𝑘))}
2
,

𝑊𝑓𝐿−1

𝑘=0

 (33) 

where 𝐻(𝑋𝑖(𝑘)) =  
𝑋𝑖(𝑘)

∑ 𝑋𝑖(𝑙)
𝑊𝑓𝐿−1

𝑙=0

 , is the kth normalized DFT coefficient at the ith frame. In general 

sand concentration signals tend to exhibit slowly varying spectral characteristics.  

3.3.5 Spectral Rolloff (SR) 

Spectral Rolloff (SR) is also a simple feature that is extensively used in a variety of machine learning 

applications.  For instance Marko [35] use it to classify  speech acoustic signal. It is defined to be C% 

percentile of the power – frequency distribution. In other words, it is the percentage below which the 

frequency bins of the magnitude distribution of the spectrum is accumulated [17][15]. That is, how 

high in the signal’s spectral structure a certain portion of the energy lies. Its mathematical definition 

can be seen in equation (36) 

 𝑆𝑅(𝑖) = 𝐶 ∙ ∑ |𝑋𝑖(𝑘)|
2

𝑊𝑓𝐿−1

𝑘=0

 , (34) 

where 𝐶 is the percentile value typically in the range 85% - 95%, 𝑋𝑖(𝑘) is the frequency magnitude of 

the signal at the ith frame and 𝑊𝑓𝐿 is the number of frequency bins. The characteristics of low 

concentration signals tend to have a lower SR than high concentration signals. High concentration 

signals contain relatively higher broadband frequencies from sand impacts in the pipeline. The 

consequence is that high concentration signals tend to have high values of SR. It is worth pointing out 

that in the actual implementation, the SR value is normalized by the size of the frequency bin. 

3.3.6 Mel-Frequency Cepstral Coefficients (MFCCs) 

MFCC algorithm is one of the standard techniques for acoustic characterization and is widely used in 

various domains including bioacoustics identification[36] and ASR [37]. Indeed, the coherency of this 

standardized algorithm allows the efficient calculation of several cepstral coefficients which are 

usually taken as features. Additionally, it is perceptually inspired algorithm that mimics the hearing 

characteristics of the human ear [38]. The resulting coefficients are used to represent the spectral 

energy distribution of the signal. A rather more complete computational sequence for extracting 

MFCC features is depicted in Figure 5. 

MFCCDCTPreprocessing DFT
Filter Bank 

Energy Output

Sand Acoustic 

Signal
Log

 

Figure 5: MFCC computation 
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As shown in figure 4, the first step is to pre-process the signal as described in the previous section. 

After pre-processing the signal, the DFT is applied to compute the spectrum magnitude which is then 

warped according to the melodic (Mel) scale using equation (35) in order to accommodate the 

frequency resolution of the human auditory system. This is achieved using a set of overlapping 

triangular bandpass filters (known as the Mel filter bank) that lead to an even distribution of the 

spectrum into a number of critical-band frequencies within the auditory range [35]. More importantly 

these filters are spaced more densely in low frequency region than high frequency region as indicated 

in Figure 6.  

 
Figure 6 illustration of filter bank frequency responses for the MFCC a) Normalized to unit height b) 

Normalized to unit area 

This Mel filter bank as defined by the critical-band frequencies 𝑓𝑐𝑏(𝑚) is given [39] according to the 

relation in equation (36). 

 𝑓𝑚𝑒𝑙(𝑓) = 2595 log10 (1 + 
𝑓

700
) , (35) 

   

 

 

𝑊(𝑚, 𝑘) =  

{
  
 

  
 

0 for 𝑓(𝑘) < 𝑓𝑐𝑏(𝑚 − 1)

𝑓(𝑘) − 𝑓𝑐𝑏(𝑚 − 1)

𝑓𝑐𝑏(𝑚) − 𝑓𝑐𝑏(𝑚 − 1)
for 𝑓𝑐𝑏(𝑚 − 1) ≤ 𝑓(𝑘) < 𝑓𝑐𝑏(𝑚)

𝑓(𝑘) − 𝑓𝑐𝑏(𝑚 + 1)

𝑓𝑐𝑏(𝑚) − 𝑓𝑐𝑏(𝑚 + 1)
for 𝑓𝑐𝑏(𝑚) ≤ 𝑓(𝑘) < 𝑓𝑐𝑏(𝑚 + 1)

0 for 𝑓(𝑘) ≥ 𝑓𝑐𝑏(𝑚 + 1)

 , 
(36) 

where 𝑓𝑚𝑒𝑙 is the logarithmic scale of 𝑓 linear frequencies. Then the sum of energies of each filter 

weighted with the corresponding band filter shape is obtained. Subsequently the logarithm function is 

applied to compute the logarithmic energies of each of the filter and the entire operation is represented 

by equation (37) 

 𝐸𝑚,𝑖 = log ∑ 𝑊(𝑚, 𝑘)

𝑊𝑓𝑙−1

𝑘=0

∙ |𝑋𝑖(𝑘)|
2 (37) 

(a) 

(b) 
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where  𝑚 = 1,… ,𝐾 denotes the filter index, 𝑘 is the DFT bin index, 𝑖 is the frame index, 𝐸𝑚,𝑖 is the 

logarithmic energy coefficient of the corresponding filter, 𝑊(𝑚, 𝑘) is the filter shape, and |𝑋𝑖(𝑘)| is 

the mel- spectral magnitude vectors whose components are highly correlated. Finally, the MFCCs are 

obtained by calculating the DCT of the log energies 𝐸𝑚,𝑖 using  

 𝑐𝑛,𝑖 = √
2

𝐾
∑ 𝐸𝑚,𝑖  cos [𝑛

𝜋

𝐾
(𝑚 −

1

2
)]

𝐾

𝑚=1

,    (38) 

where 𝑛 = 1,2, … , 𝐾 and 𝑐𝑛,𝑖 represents the 𝑛𝑡ℎ MFCC of the 𝑖𝑡ℎ of the signal. This DCT is usually 

employed to decorrelate these components thereby improving their statistical properties[37]. In most 

practical application, the first 8-13 coefficients of the MFCC are suffice to represent the spectral 

shape of the signal. The implication is that the MFCC is actually evaluated for a number of 

coefficients that is less than the number of the filters. However, the interpretation of the MFCC 

coefficients is often a subject of controversy. This is because only the first two coefficients have 

meaningful interpretation. The first coefficient represents the average power over all frequency bands 

and the second coefficient provides tradeoff between high and low frequencies in the signal spectrum 

and often is related to the centre of gravity of the spectrum. The other high-order coefficients contain 

finer spectral details useful to distinguish the signals of interest with no definite interpretation. 

Notwithstanding the limitation, they tend to provide compact spectral representation which largely 

attributed to their success in acoustic identification [17][40]. 

Other than the above spectral features, there are also some additional spectral features such as the 

spectral power, the dominant frequency and the dominant frequency magnitude. Features like these, 

though useful in discriminating between different solid signal characteristics, are not readily available 

in the literature. Moreover they do not have a definite mathematical definition. As such nothing 

further can be discussed in relation to these features here. Having described the feature extraction 

process, the following section will discuss the modelling for machine learning algorithm and the 

optimisation algorithm. 

 

4 Modelling for machine learning and optimisation algorithms 

4.1 Artificial Neural Networks (ANNs) 

Artificial Neural Networks (ANNs) are computational model inspired in the biological neurons and 

have been evolved since the seminal neural model of McCulloch and Pitts[41]. More generally, they 

are used in applications ranging from concept learning to function approximation. Architecturally, 

they are made up of highly interconnected units called neurons usually organized in layers and aimed 

to solve a variety of really sophisticated computational problems. This basically consists of an input 

layer, an output layer and one or more layers between the input and the output often called the hidden 

layer(s)[42].The connections between the neurons have weights associated them and these weights are 

random at the initial instant. Moreover, ANNs are categorized into groups according to the connection 

pattern. Feed-forward networks, in which the connections between layers are unidirectional and 

recurrent networks which contain feedback connections. However, for simplicity we focus on feed 

forward ANNs. Although different models have been developed based on the feed forward 

architecture, the multi-layered feed forward networks are the commonest[43]. Each neuron in the 

network performs simple computation and application of activation function. This activity serves to 

generate an input to any of the participant neuron in the succeeding layer[42]. On one hand, the 
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application of the activation function is especially important in ANNs, for model of complex non-

linear classification patterns, the activation functions are crucial. Of the available activation functions, 

the sigmoid function is far the most common that prevails in ANNs and particularly the logistic 

function. The sigmoid function exhibits asymptotic behaviour, smoothness, continuous and 

monotonically increasing characteristics. Others are hyperbolic tangent and arctangent functions[44]. 

Interestingly, since these weights are random initially, there is the critical need for an algorithm than 

can modify the weights of the ANN according to a certain well defined rules so that the desired output 

can be obtained from the network. This process of weight modification is called learning and the 

method of learning is known as supervised learning. It is supervised because the network is presented 

with samples that have inputs and outputs. Additionally, the application of supervised learning can be 

divided into two groups: batch (also known as off-line) and stochastic (also known as on-line). Off-

line learning is an approach that utilizes a set of samples in order to learn and approximate a certain 

function. Conversely, on-line learning is related to adjusting the network weights each time a simple 

is presented and the error is accumulated for the entire sample size[45][46]. Although there are many 

learning algorithms for ANNs, the most popular, is adopted here and will be introduced in the 

following section. This is typically the error correction rule that tends to minimise the learning error 

through the adjustment of the network weights. More importantly the characteristic of ANNs in the 

ability to learn exhibit the essential feature of intelligence. Besides the learning capability, the 

generalization ability of ANN is another important characteristic that strongly influences the 

performance of the network. Together these factors provide important basis that suggest ANNs are 

very powerful tools[47]. 

4.2 Back-Propagation Algorithm (BPA) 

Back-Propagation Algorithm (BPA) is still the most widely used learning algorithm for multi-layered 

feed forward networks. Conceptually, it is simple and computationally efficient[48]. Moreover, the 

BPA is a gradient-descent based approach commonly employed to minimise the cost function which 

the network implement in the learning procedure. The sum of squared difference error cost function is 

the most popular in ANN and is defined in Equation (41) [49]. The simple reason for this is in order to 

exploit the convex instinct of quadratic equations.  

 𝐽(𝑊) =  
1

2
∑(𝑑(𝑖) − �̂�(𝑖))

2
𝑁

𝑖=1

 (39) 

In equation (39), 𝑊denotes the network trainable parameters, 𝑑 is the desired output and  �̂� is the 

network output. In general, the basic principle of BPA is to propagate the error signal of the output 

layer backward into the network through gradient computation of the arbitrary cost function with 

respect to each of the connection weights. As a consequence, these weights are iteratively adjusted 

thereby reducing the error, which serve as a measure for the network performance. Difficulties arise, 

however, when an attempt is made to design the algorithm for implementation on any real platform. 

The evidence of these difficulties becomes very clear in making arbitrary choices such as the number 

of hidden layers, the number of neurons in a hidden layer, the learning rate, the momentum term, the 

error stopping criterion and the like. The first two reflect on the structure of the network whereas the 

last three relate to the learning parameters. Although these choices are critical, there are no 

straightforward approaches for deciding them as they are primarily problem and data dependent. In 

this respect, the practitioner can make better choices heavily relying on heuristics and some 

underlying theoretical results [44].  
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For number of hidden layers, there used to be arguments among researchers about networks with 

single or more hidden layers – which one provide better mapping characteristics? Theoretically, both 

architectures can approximate non-linear function to the desired level of accuracy, but the intuition is 

to first try solving the problem at hand using the conventional ANN (network with single hidden 

layer) seems reasonable and then evaluate the network’s performance [44]. However, the recent trend 

in research has seen a dramatic shift from the conventional networks to networks with many hidden 

layers that have led to the introduction of the term deep learning methods. In particular top level of 

performance had been reported at solving really complex problems involving deep neural 

networks[50]. The notion of the number of neuron in a hidden layer, on the other hand, is critical in 

relation to the generalization ability of the network. There are two basic difficulties with the idea of 

number of neurons in a hidden layer as follows. The first one arises from insufficient number of 

neurons. Consequently, the network simply neglects the underlying function which results in poor 

network performance[51][52].The second difficulty arises from too many hidden layer neurons. It is 

well known that real world observations are composed of data and noise. Therefore instead of 

modelling just the data, the network also fits the noise. Although the network will perform incredibly 

well on the training samples, it will not provide reasonable outputs on unknown samples. This 

phenomenon is known as overfitting[44]. Notwithstanding, this difficulty is no longer a serious issue 

since the introduction of validation technique in quantitative models. The details will be discussed in 

later section. 

However, since the BPA implements the steepest descent (SD) technique to update the network 

weights, the appropriate choice of the learning rate, which “scales” the gradient, is crucial and has 

significant effect on the convergence time. Depending on the curvature of the error cost function, a 

small learning rate will result in too many steps in order to reach a reasonably good solution. On the 

other hand, a large learning rate will perhaps lead to oscillation and thus preventing the error to fall 

below a certain value. Additionally, for stabilization particularly in error functions that have steep 

ravines landscape, the momentum term is introduced in the weights update rule. The momentum term 

scales the influence of the previous weight on the current weight thereby reducing rapid oscillations in 

shallow regions of the error curvature. As a result, working with the momentum term accelerates the 

speed of optimal convergence[42][53]. Overall, the success of the learning process is dependent on 

the proper choice of both the learning rate and the momentum term. Their value typically lies in the 

interval [0,1].  

One of the major drawbacks of BPA is convergence to local minima [54]. However, the reality of 

local minima is a consequence of the fact that the error curvature is simply the superposition of 

nonlinear  activation functions that may exhibit local minima at different locations, which 

occasionally results in a nonconvex curvature of the error cost function[51][52]. So far, a great variety 

of techniques aimed to accelerate the learning process have been proposed. These techniques include 

the Conjugate Gradient BPA, the Broyden-Fletcher-Goldferb-Shanno Quasi-Newton (BFGS) method, 

Levenberg-Marquardt Algorithm and the like [48]. However, as the basis for these methods is the 

second order derivative, an obvious difficulty is the occasional convergence to local minima. One way 

to overcome this challenge is through the use of improved gradient-based algorithms that employ 

parameter adaptation strategies[43]. This can be achieved by the use of global optimization techniques 

which can lead to optimal weight adjustments thus allowing the network to eschew local minima 

during the learning process. Many such algorithms implementation in ANN have been presented in 

the literature like the Simulated Annealing (SA) [55], Genetic Algorithms (GA) [51], Evolutionary 

algorithms (EA) [56]. This paper proposes a new methodology for parameter adaptation; “Grey wolf” 
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optimiser. Therefore, before going any further, it is important to derive the BPA-based learning 

procedure.  

4.3 Derivation of BPA learning procedure 

To illustrate the back propagation algorithm, consider the conventional network which has one hidden 

layer and one neuron in the output layer. The cost function is a function of the training samples and 

the weights. Therefore the learning proceeds by changing only the weights since the training samples 

are fixed. Applying the chain rule repeatedly, the gradient of the cost function with respect to each of 

the weight in the network can be computed and then propagated back through the network, and all the 

weights are adjusted so as to decrease the cost. The gradient of the output weight vector is 

 
𝜕𝐽(𝑊)

𝜕𝑊𝑜𝑙
= − 

𝜕𝐽

𝜕�̂�

𝜕�̂�

𝜕𝑢𝑜𝑙

𝜕𝑢𝑜𝑙
𝜕𝑊𝑜𝑙

 , (40) 

where 𝑊𝑜𝑙  is the weight vector for the output layer, �̂�  is the output and 𝑢𝑂𝐿 is the weighted sum of 

the inputs of the output neuron. The negative sign is an indication that weight update is in the 

direction of negative gradient. From equation (40) the error signal 𝛿𝑜𝑙is 

 𝛿𝑜𝑙 = −
𝜕𝐽

𝜕�̂�

𝜕�̂�

𝜕𝑢𝑜𝑙
 . (41) 

Similarly, the gradient of the hidden layer weight vector is  

 
𝜕𝐽(𝑊)

𝜕𝑊ℎ𝑙
= −

𝜕𝐽

𝜕�̂�

𝜕�̂�

𝜕𝑢𝑜𝑙

𝜕𝑢𝑜𝑙
𝜕𝑜ℎ𝑙

𝜕𝑜ℎ𝑙
𝜕𝑢ℎ𝑙

𝜕𝑢ℎ𝑙
𝜕𝑤ℎ𝑙

 , (42) 

where 𝑊ℎ𝑙 is the weight vector for the hidden layer, 𝑜ℎ𝑙 is the output of the hidden layer neuron(s) 

and 𝑢ℎ𝑙 is the weighted sum of inputs of the hidden layer neuron(s). Thus from equation (42) the 

hidden layer error signal 𝛿ℎ𝑙 is written as 

 𝛿ℎ𝑙 = −
𝜕𝐽

𝜕�̂�

𝜕�̂�

𝜕𝑢𝑜𝑙

𝜕𝑢𝑜𝑙
𝜕𝑜ℎ𝑙

𝜕𝑜ℎ𝑙
𝜕𝑢ℎ𝑙

 . (43) 

Finally, the adjusted weight vector is computed as follows: 

 𝑊𝑡+1 = 𝑊𝑡 + 𝜂𝑟∆𝑤 + 𝛼𝑚(𝑊
𝑡 −𝑊𝑡−1) , (44) 

where 𝜂𝑟 is the learning rate, 𝛼𝑚 is the momentum term and ∆𝑤 is computed using Equation (40) and 

Equation (42) for the respective layers. However, the weight updation strategy is repeated many times 

with the training samples until the network converges to producing the desired minimum cost 

4.3.1 Regularization 

In order to combat the complexity of ANN and avoid overfitting, the regularization technique is 

employed. This technique constrains the Back propagation algorithm to fit the data well thus 

improving model performance, particularly when noise is present [57]. The way it works is by 

shrinking complex model coefficients towards zero values and hence the name weight decay [58]. 

One way to implement regularization is to introduce the regularization term 𝜆 on the model 

complexity in the cost function. Therefore instead of minimizing the cost function alone, now a 

combination of the cost function and the model complexity is minimized. In this sense, the 

regularization hyper-parameter 𝜆 is used to trade-off between the cost function and the complexity of 

the model. 

 𝐽(𝑊) =  
1

2
∑(𝑑(𝑖) − �̂�(𝑖))

2
𝑁

𝑖=1

+ 
𝜆

2
∑(𝑊)2 (45) 
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Indeed, a proper choice of the regularization term in equation (45) would guarantee a model with 

optimal complexity will be produced. Together the learning rate, the momentum term, the 

regularization coefficient are called the network hyper-parameters whose optimal values have to be 

tuned using the global adaptive technique. Before introducing this technique, we will first outline the 

structure of the ANN model. 

4.4 Modelling using classical ANN 

A six layer artificial neural network has been modelled. The six layer ANN shown in Figure (7) has 

five hidden layers. In this network, the neurons in the layers of the hidden layer are arranged such that 

the preceding layer has more neurons than the succeeding layer. That way the complexity of the 

model increases as the data progresses through the network. The processing neurons in the hidden 

layer and the output layer are nonlinear using standard logistic function. The architecture of the model 

is thus 2L 25N 15N 10N 5N 3N 1L, where L represents linear processing neuron and N indicates 

nonlinear processing neurons. This model is used to capture the propagation of the acoustic feature 

vector for each class in the training sample. 
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Figure 7: A 6 layer ANN model 

The back propagation algorithm is used to update the weights of the network and the Grey wolf 

optimiser (GWO) adapts the network hyper-parameters while minimizing the regularized cost 

function for each feature vector. Therefore the inclusion of GWO in BPA is to provide adaptive 

tuning of the parameters and thus improving the convergence speed of the BPA. We will introduce the 

GWO needed to adapt the parameters for fast convergence of BPA. 

 

4.5 Grey Wolf Optimiser (WO) 

Grey Wolf Optimizer (GWO) is a nature-inspired metaheuristic optimization algorithm firstly 

developed by Mirjalili et al [59] and mimics the social behaviour of grey wolves in a pack. 

The algorithm is inspired by the leadership hierarchy and hunting strategy of grey wolves. In 

order to simulate the leadership hierarchy of wolves for algorithmic development, four types 
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of wolves are considered – the alpha (α), beta (β), delta (δ) and omega (ω). Moreover, the 

three hunting strategies of wolves: searching for prey, encircling prey and attacking prey are 

employed. The next subsections present Algorithm development. 

4.4.1 Leadership hierarchy 

Mathematically, GWO is modelled by assuming the best solution to be the alpha. 

Accordingly, the second and third optimal solutions are regarded beta and delta respectively. 

The remainder of the prospective solutions are considered to be omega. The optimization 

strategy (hunting) in the GWO algorithm is dictated by alpha (α), beta (β) and delta (δ). The 

omega wolves always submit to the commands of these three wolves [59]–[61] 

4.4.2 Encircling prey 

As the grey wolves are close to the prey during the hunt, then all the wolves will take position 

and encircle the prey. The encircling behaviour can be mathematically represented by the 

equations: 

 𝐷 =  |𝐶𝑋𝑝 − 𝐴𝑋(𝑡)| 
 

(46) 

 𝑋(𝑡 + 1) =  𝑋𝑝(𝑡) − 𝐴𝐷 (47) 

where 𝑡 represents the current iteration, 𝑋 is the position vector of a wolf whereas 𝑋𝑝 denotes 

the position vector of the prey , 𝐴 and 𝐶 represent the coefficient vectors and 𝐷 is the 

encircling behaviour. The vectors 𝐴 and 𝐶 are random and adaptive vectors that provide 

exploration and exploitation for the GWO algorithm and are computed as follows: 

 𝐴 = 2 �⃗�  ×  𝑟1 − �⃗� 
 

(48) 

 𝐶 = 2 ∗ 𝑟2 (49) 

where 𝑟1 and 𝑟2 are random vectors in [0,1] and the components of  �⃗�  varies linearly from 2 

to 0 over the iteration circle [59]–[61]. 

4.4.3 Hunting 

Grey wolves have an excellent sense of smell which enables them to locate the position of 

prey, chase and encircle the prey. The hunt is usually guided by the alpha. Occasionally, the 

beta and delta also take part in the hunt. It is, however, apparent that from the inherent 

capability of the wolves, the alpha, beta and delta have better knowledge about the 

prospective location of prey than the Omega. Consequently, the first three solutions are 

considered optimal and the other search agents should update their positions according to the 

position of the optimal search agents. For this purpose, the following equations are 

formulated to assume the hunting strategy of the wolves and find the propitious regions for 

each of the best search agents [59]–[61].   

 𝐷𝛼 = |𝐶1𝑋𝛼(𝑡) − 𝑋(𝑡)| 
 

(50) 

 𝐷𝛽 = |𝐶2𝑋𝛽(𝑡) − 𝑋(𝑡)| (51) 
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 𝐷𝛿 = |𝐶3𝑋𝛿(𝑡) − 𝑋(𝑡)| 

 

(52) 

 𝑋1 = 𝑋𝛼(𝑡) − 𝐴1 ∗ (𝐷𝛼) 
 

(53) 

 𝑋2 = 𝑋𝛽(𝑡) − 𝐴2 ∗ (𝐷𝛽) 

 

(54) 

 𝑋3 = 𝑋𝛿(𝑡) − 𝐴3 ∗ (𝐷𝛿) 
 

(55) 

 
𝑋(𝑡 + 1) =  

𝑋1 + 𝑋2 + 𝑋3
3

 
(56) 

 

Where 𝑡 denotes the current iteration, 𝑋𝛼(𝑡), 𝑋𝛽(𝑡) and  𝑋𝛿(𝑡) indicate the position of the 

grey wolves 𝛼, 𝛽 and 𝛿 at the 𝑡𝑡ℎ iteration, 𝑋(𝑡) denotes the position of the grey wolf at  𝑡𝑡ℎ 

iteration. 

Table 1 

Initial parameters of the GWO 

Parameter Value 

�⃗� Linearly decrease from 2 - 0 

Population size 100 

Maximum generation  250 

 

4.4.4 Attacking prey (Exploitation) 

After the wolves have encircled the prey for capturing, the final stage of the hunt is to attack 

the prey. It worth noting that approaching the prey decreases the value of �⃗� which in effect 

decreases the coefficient vector A. This means that A is random variable in the interval [-2�⃗�, 

2�⃗�] where �⃗�  is decreased linearly over the iteration cycles. The exploitation of the GWO 

algorithm starts when |𝐴| < 1. However, when the random variable A assumes values in the 

interval [−1,1], then the next position of a search agent can be random within the position of 

the prey and the current position of the search agent. This enables the search agents to 

converge towards an optimal position of prey dictated by the best three solutions (alpha, beta 

and delta) [59]–[61]. 

4.4.5 Search for prey (exploration)  

Instinctively, grey wolves search for prey in the predatory (solution) space according to the 

position of the alpha, beta and delta which always move towards the direction of the optimal 

solution. They tend to move independently to search for prey and converge to attack prey. 

More importantly, the search (exploration) is determined by the magnitude of the coefficient 

vector A with random values greater than 1 i.e |𝐴| > 1 and that forces the search agent to 

move away from the prey. Moreover, the coefficient Vector C which takes random values in 

[0, 2]  provides random weights for the prey simply in order to emphasize for 𝐶 > 1 or 

deemphasize for 𝐶 < 1 the influence of the prey in defining the metric in equation (46). This 
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randomization ensures exploration and local minima avoidance throughout the optimization 

process [59]–[61]. 

4.6 modelling using Time Delay Neural Network TDNN 

The prediction models were implemented using Time Delay Neural Networks (TDNN). Unlike the 

conventional multi-layered neural network architecture, TDNN has a delay line tapped at the input. In 

essence, such a network has its input neurons modified by introducing a delay line. The inputs of such 

neurons will now be multiplied by several weights, one for each delay and one for the undelayed 

input. This modification, however, allows the model to capture the dynamics of the modelled process. 

[62][63]. In this work a three layer TDNN has been modelled. The three layer TDNN shown in Figure 

8 has one hidden layer of ten neurons. Each neuron in the hidden layer has hyperbolic tangent 

function as the nonlinear function and the output neuron has a pure linear function. The hyperbolic 

tangent function was chosen as the activation of the hidden layer simply because of its excellent 

mathematical properties.   The architecture of the model is thus 2L 10N 1L, where L represents linear 

processing neuron and N indicates nonlinear processing neurons. This TDNN architecture is used to 

model the non-linear temporal dependencies in the acoustic feature vector pattern for the estimation 

and prediction of the sand flow rate, pressure drop, gas velocity and sand concentration. 
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Figure 8: A 3 layer TDNN model 

The back propagation algorithm is used to update the weights of the network and the LMA iteratively 

adapts its damping to minimize the sum of squares cost function. However, there is a caveat relative 

to backpropagation implementation on the TDNN units. In here, instead of changing the weights on 

time-shifted connections separately, the weight update is achieved by the average of all corresponding 

time-delayed weight changes. In this way, the network is compelled to ascertain meaningful input 

pattern regardless of misalignment of the pattern in time. This is, therefore, a significant property, as it 

makes the network independent of error-prone preprocessing algorithms that otherwise would be 

needed for time alignment [63]. 
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Table 2 

Database used for the signal processing experiment 

SC No   �̇�𝒈 (kg/s) 𝒅𝒑 (bar) �̇�𝒔 (kg/s) 𝑺𝑪 𝑽𝒈 (m/s) 

      

1 0.0552 1.0847 2.4 43.7 9.9 

2 0.0623 1.0620 2.2 35.4 11.3 

3 0.0640 0.9887 1.8 28.9 12.1 

4 0.0551 0.4412 0.6 11.6 13.9 

5 0.0653 0.2077 0.2 3.0 18.0 

 

5 Results and discussion 

In the following subsections, we will demonstrate the results of the analysis for the acoustic signals 

generated when the solid particles hit the bend component of the pipeline using the various signal 

processing techniques described in the previous sections. For simplicity in the analysis, five instances 

of target events belonging to 5 different concentration acoustics were considered from the database as 

shown in Table 2. Additionally, the results of the performance evaluation for the recognition of the 

solid characteristics data in the pipeline which involves two different methods are also presented. 

These methods are compared in terms of identification accuracy described by NRMSE. 

5.1 Acoustic signal processing results 

This section presents the analysis of the raw acoustic signal generated by the impacting solid particles. 

A Vstatistics analysis results of the acoustic signals, shown in Figure 9, reveals the nature and 

variability property of the signals overtime, the broad peak at around lg(n) = 3. This broad peak 

indicates the tendency of the signals to reverse their trends over the time window considered.  Figure 

9 presents the effects of solids concentration on the energy distributions of the IMFs of acoustic 

signals. It can be seen in Figure 9 that the acoustic fluctuation energy is mainly distributed at the scale 

of IMF1 for all the solids concentrations. A possible explanation for these results may be the 

impacting particles are in suspension flow. However, the energy distribution shifts towards the lower 

frequency IMFs particularly for solid concentrations: 43.7; 28.9 and 11.6 respectively. As a result, 

Figure 10 exhibit increased energy distribution fraction in the scales of IMF10 ~ IMF16. Probably, 

this is due to the slight tendency for change in the flow mechanism of the impinging solid particles in 

the pipeline. Whether this energy distribution shift is actually related to the change in flow mechanism 

deserves further investigation. 
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Figure 9 Vstatistics plots of the acoustic signals 

 

 

Table 3 

Concentration of the signals under analysis 

Concentration number Solid Concentration (SC) 

 

1 

 

43.7 

2 35.4 

3 28.9 

4 11.6 

5 3.0 
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Figure 10 effects of solids concentration on the energy distributions of the IMFs of acoustic signals  

Figure 11 presents the spectral power of the acoustic signals for each of the five solid concentrations 

shown in Table 3. From this figure, one can immediately see that all the acoustic signals show 

significant power concentration around 1 – 1.3 KHz. This peakiness of the spectra at a relatively wide 

frequency range can be as a result of the solid flow.  However, the details in the low-frequency region 

are unclear due to the approximately higher magnitude. Additionally, a prevailing band of energies 

can be easily seen in Figure 10. All characteristics of the spectra are quite significant. Collectively, the 

energies in the overall frequency range contribute to the spectral power feature. Furthermore, all of 

the spectrums have substantially different energy distribution patterns caused by the difference in the 

solids concentrations in the pipeline. 
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Figure11 Spectral power plots of the acoustic signals for solid concentrations 43.7, 35.4, 28.9, 11.6 

and 3.0 over the bandwidth 22.05 KHz. 

Figure 12 gives the Histograms of the mean for energy segments of the solid concentrations signals 

from which the energy fluctuations in the different signals are clearly shown in this probability 

density – feature value distribution. Besides the clear energy fluctuation of the acoustic signals, there 

is one more interesting new observation. The fluctuations of the signals energy in relation to the solid 

concentration are non-linear. The more likely explanation is that the pressurisation in the sand feeder 

is simply not being regular at the pre-set level, which has significant influence on the signals strength. 

This figure indicates that the values of this summary statistic are indeed higher for the solid 

concentration, SC = 35.4. In summary, there is no alternative to the energy measure in terms of 

robustness to other different kinds of recording variabilities.  

The Histograms of the mean of ZCR over the short-term frames of the concentration segments are 

shown in figure 13. As expected, the signal of the solid concentration, SC = 3.0 contains relatively 

high zero crossing rate values compared with the trends in the other concentration signals, as shown in 

Figure 13. This is because the signal of SC = 3.0 is apparently dominated by low amplitude values 

when compared with other signals. As discussed previously, zero crossing rate of the signals indicate 

the measure of their amount of randomness. Additionally, the ZCR value as a guide, the randomness 

in the SC = 3.0 signal can be seen to have one-to-one correspondence with its ZCR value. This 

observation is indeed consistent with the higher ZCR values as in figure 12. It could be concluded that 

the lower the concentration, the greater is the amount of randomness in the signals under analysis. 

The results of the histograms on the energy entropy for the concentration signals under consideration 

are shown in Figure 14. Overall, the histograms clearly show the signals exhibit relatively high energy 

entropy values though the differences in these values are still clear. Interestingly, based on the idea of 
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the high energy entropy values, one can understand that the signals contain no sudden change in their 

energies. This is a clear indication that the acoustic measurements are taken under stable flow 

conditions. Yet, these measurements represent a physical phenomenon, and as such treated by the 

energy entropy, again a clear indication that the energy entropy can be used to analyse the signals. 

 

 

Figure 12 Histograms of the mean of the short-term energy for the five solids concentrations  

In Figure 15, the histograms of the mean value of the spectral centroid for acoustic segments from the 

five solids concentrations are presented. It can be seen that the SC = 3.0 is clearly shown with the 

expected spectral centroid values. This implies the spectrum of the signal for that concentration is 

inherently dominated by high frequencies. The only unexpected component of the results is the higher 

spectral centroid values for the SC = 43.7 signal. It represents the suspension of the solid particles in 

the medium. On one hand the respective values for this statistic are relatively lower for the other 

signals. However, taken the uncertainty of gas – solid flow behaviours into consideration, these 

findings are therefore significant.  
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Figure 13 Histograms of the mean value of the sequence of values of the Zero Crossing Rate (ZCR) 

for the five solids concentrations  

 

Figure 14 Histograms of the mean value of the entropy of energy for acoustic segments from the five 

solids concentrations  
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Applying the spectral spread method to the signals, we have the histograms of the mean value of it for 

the acoustic segments as shown in Figure 16.  Interestingly, this metric measures the dispersion of its 

values around its spectral centroid. Seemingly low values of the spectral centroid correspond to 

signals whose spectrum is tightly concentrated around its centre of gravity. For these signals under 

analysis, the results in Figure 16 indicate that the spectrograms portions of the SC = 43.7 and SC = 

35.4 signals are more tightly spread around their centroid than the other signals. It should be noted, 

however, that this observation is not the same for every SC = 43.7 and SC = 35.4 signals as the 

correlation between the signals and the concentrations is not linear and constant. 

Apparently, the spectral entropy is a metric designed to capture the uniformity in the signal spectrum. 

Although the results of the histograms of the mean of sequences of spectral entropy of segments from 

the five signals under analysis, given in Figure 17 show the variation of probability as a function of 

the spectral entropy values, it is not easy to explain the trends in terms of solids interaction with the 

bend of the pipeline. In general, the spectral entropy value is low for a spectrum with flat distribution 

whereas spectrum which contain sharp peaks exhibit higher values. As shown in Figure 17, the SC = 

3.0 signal yields the lowest spectral entropy value among the concentrations. The reason seems clear: 

there is no so much variation in the spectrum in the signal. The values of this statistic for the spectral 

entropy of SC = 35.4 and SC = 28.9 stay almost identical almost to that of SC = 11.6 at high spectral 

value. Likewise, the trend for SC = 43.7 and SC = 3.0 but at relatively lower spectral value. Overall, 

these high values in the spectral entropy indicate the randomness in the spectrum of the signals. 

 

 

Figure 15 Histograms of the mean value of the sequence of values of the spectral centroid for the five 

solid concentration signals under consideration 
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Figure 16 Histograms of the mean value of the sequences of the spectral spread feature for the five 

solid concentration signals 

 

 

 

Figure 17 Histograms of the mean of sequences of spectral entropy of segments from the five signals 

under analysis 



32 
 

Figure 18 presents the sequence of spectral flux for the five concentration acoustic signals under 

analysis. It can be seen that all the signals exhibit low spectral flux values regardless of the amount of 

solid concentration in the pipeline. These suggest that all the signals have slowly varying or nearly 

constant spectral properties. This conception of low spectral flux values clearly makes physical sense 

from the nature of the interactions of the solid particles with the bend component of the pipeline 

which are random. Thus, in this case, the details about the variability in spectral properties of the 

signals have been determined quantitatively. 
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Figure 18 Sequence of spectral flux for the five concentration acoustic signals under analysis: a) SC = 

43.7b) SC = 35.4 c) SC = 28.9 d) SC = 11.6 e) SC = 3.0 
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Figure 19 gives the histograms of the mean value of sequences of spectral rolloff values. From this 

figure, it can be seen that the characteristics of the signals (SC = 43.7, SC = 11.6 and SC = 3.0) tend 

to higher values for this feature. This is an indication that the signals contain higher frequencies 

compared to the other signals. As such 90% of the signals energy lies in the high frequency region. In 

this realm, the interpretation of this feature serves to give more light about the flow conditions in the 

pipeline. It can resolve the suspension flow mechanism in the pipeline provided the value is high. 

 

Figure 19 Histograms of the mean of the segments of the spectral rolloff feature for the five solids 

concentrations signals 

Figure 20 shows the histograms of the mean of the 2nd MFCC for the five concentration signals under 

consideration. The second MFCC index approximates the broadness of a signal spectrum which is in 

turn related to the spectral centroid. From Figure 19, it can be easily seen that the SC = 35.4 signal 

gives the highest value for this feature. To explore the differences among the various MFCC indexes, 

a 2D plot of the first 13 MFCC indexes which describe the coarse spectral envelope of the signals is 

given in Figure 21.  From Figure 21, we can observe the minute variations in the five plots. For 

example, the SC = 43.7 signal has much higher value in the fourth MFCC than the other signals. 

However, under consideration of these features all the five concentrations are different from each 

other.  
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Figure 20Histograms of the mean of the 2nd MFCC for the five concentration signals under analysis 
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Figure 21 MFCCs for the five solid concentration signals: a) SC = 43.7 b) SC = 35.4 c) SC = 28.9 d) 

SC = 11.6 e) SC = 3.0 
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Interestingly, with these idealized features, we have developed the signal processing techniques for 

the analysis of the concentration signals. Next, we will determine the subsets of these features that are 

more significant in developing the quantitative recognition models. 

5.1.1 Feature Selection 

Central to the feature selection processes is to construct a subset of features from the feature vector 

extracted that are by far more relevant to the recognition system. In fact, the selected features should 

capture the important characteristics of different kinds of the acoustic signals. The feature selection 

processes can be categorized as wrapper methods (model-dependent) and filter techniques (model-

independent)[64]. In this paper, the wrapper methods have been chosen, particularly in the form of 

neighbourhood component analysis (NCA). This method indicates how significant features are alone, 

which gives guidance on how to compose the subset feature vector. The subset of each feature is 

evaluated by a 5-fold cross validation on the training set. Weights are attached for each feature and 

these indicate what features to use, where a weight above zero implies that the feature is significant. 

Results from the NCA analysis had identify 9 features as the most relevant features from the feature 

vector, in which 2 features are selected to build the prediction models. The selected features are 

spectral centroid and spectral entropy.  

5.2 Experiment and evaluation performance 

In order to evaluate the used prediction models, experiments have been conducted. Firstly the selected 

features computed from the training dataset were used to train the conventional neural network model 

described in section 4.4 and the TDNN model described in section 4.6. Accordingly, the test dataset 

was used to measure the performance. The performance was measured in terms of the normalized root 

mean square error (RMSE) in the following: 

 
𝑁𝑅𝑀𝑆𝐸 = 

𝑅𝑀𝑆𝐸

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
 

 
(57) 

where 𝑦𝑚𝑎𝑥 denotes the maximum value of the actual response,  𝑦𝑚𝑖𝑛 represents the minimum value 

of the actual response and RMSE is the error indicator, defined as  

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦 − �̂�)2
𝑛

𝑖=1

 (58) 

where n is the total number of test trials, 𝑦 is the actual response and �̂� is the predicted or model 

response. The computer facilities for the experiments are a 3.0 GHz intel (R) core (TM) i5 – 4590S 

processor, windows 7, 64 – bit operating system, a 8.0 GHz RAM, MATLAB 2017a. Initial 

parameters for the Grey Wolf Optimiser (GWO) are listed in Table 1, in which the vector �⃗� varies 

linearly from 2 to 0 and the population size is 100. The maximum generation number is 250, 

as it serves as the termination condition for the training. 

5.2.1 Experimental results 

In order to test the efficiency of the two models with the selected features, these models are evaluated 

individually. The results presented are in terms of the normalized root mean square error (NRMSE) 

and are tabulated in Table 2. From the performance results on Table 2, we see that the highest 

performance (result exhibited by low NRMSE values) is obtained with the TDNN models. This 
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observation indicates that the TDNN model is particularly suitable for the flow pattern recognition in 

a particle laden flowline.  

Table 4 

Performance of two methods for four different solid characteristics models 

Method Model     NRMSE 

 

Classical ANN 

 

PD 

 

0.26 

 SFR 0.66 

 GV 0.46 

 SC 0.29 

 

TDNN 

 

PD 

 

0.20 

 SFR 0.18 

 GV 0.16 

 SC 0.17 

PD: Pressure Drop, SFR: Sand Flow Rate, GV: Gas Velocity, SC: Solid Concentration 

 

6  Discussion 

In this study, we have presented the techniques of signal processing for the analysis of acoustic 

signals generated when solid particles strike the bend component of a gas flowline and serve to 

provide the potential of online quantitative monitoring of the particles in the flowline. The techniques 

have proven to be versatile and robust in the analysis of the acoustic signals. Additionally, to the 

authors’ knowledge, this is the first study of its kind to use acoustic signals for monitoring the 

presence of solid particles in a gas flowline quantitatively. Although the use of these signals for 

qualitative monitoring have been studied previously, quantitative readings about the solid 

characteristics may be a preferred alternative which can provide a more reliable data  that would 

significantly  impact on the economy of the project. 

 

Acoustic solid monitoring has been researched particularly in the oil and gas industry based on the 

impingements of the solid particles with the wall of the bend through a change of the signal pressure 

level that is related to the energy of the impact. Effectively, when compared with the velocity, often 

result to a trend of increasing or decreasing solid particles in the flowline.  In addition to the change in 

signal energy, however, in this study, the change in acoustic that can be heard by the human ear is 

taken into account. Although the acoustic does not have difference which is perceptible to human 

hearing, a significant difference was much more pronounced in majority of the spectral properties 

extracted between the concentration signals.it is, however, evident from the research findings that the 

signal behaviour differ from concentration to concentration. Additionally, a frequency band of 1 – 1.3 

KHz has been identified from the spectra as being the richest with solid concentration related 

information in this particular monitoring application.  

From the V-statistics analysis, it was observed that the signals exhibit non-periodic cycles. The 

consequence is the misleading energy- frequency distribution when the signals are analysed with the 

conventional methods of processing. However, the results from our developed methods show good 

grounds on the front of solid concentration identification in the pipeline. Recognition of the flow 

conditions in the pipeline has the potential to, among other things, allow the flow to be maximised and 

therefore preventing risk of unscheduled production deferrals. Hence, this approach provides a very 

important step towards bridging the gap between existing techniques, which are capable of providing 
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qualitative readings, and the requirement of quantitative monitoring. This is especially important in 

the critical area of flow assurance and production optimisation. The potential for solid particles in the 

flowlines to accelerate erosion damage to major infrastructures can result in unacceptable safety and 

environment issues as well as economic concerns. Hence, the focus of future research will be on the 

generated acoustic signal behaviour with mechanical wear formation at the bend, since the prediction 

of wear formation will be the primary intention of any future condition monitoring system. The 

analysis of the sensor outputs with the developed methods reveals the complexity of the gas – solid 

flow. This is because there is no clear pattern between the features extracted from the methods and the 

flow conditions.  

 

A classical multi-layered artificial neural network quantitative model was trained on a subset of the 

features extracted on the acoustic emitted by the solid concentration in the flowline. However, this 

model failed to reveal a significant pattern between the selected features and the solid characteristics 

data in the flowline. One explanation for this failure may be the inability of the classical neural 

network architecture to deal properly with dynamic nature of acoustic event. However, a Time-Delay 

neural network (TDNN) that addresses this aspect of the acoustic event was trained on the acoustic 

data. Performance evaluation demonstrates superior pattern recognition results has been achieved 

using this approach. 

 

7 Conclusion 

 

The combination of the signal processing techniques and the machine learning approach has offered a 

powerful method for online quantitative monitoring of solid particulate materials in a gas flowline.  

The key to this approach is the signal processing methods, which enables the acoustic data to be 

reduced into such a form that the machine learning method can easily work with. These methods 

forming the basis of the feature extraction are computationally efficient. To the author’s best 

knowledge, this is the first time acoustic signal analysis has been quantitatively correlated to the 

concentration of solids in a gas flowline. This is particularly significant because changes in the 

acoustic generated from the impacting particles are not perceptible to human hearing. Furthermore, 

the features resulting from the analysis are further optimised using the neighbourhood component 

analysis (NCA) for regression and their relevance for the responses have been studied separately. We 

have found that the spectral centroid and the spectral entropy are the most relevant features to be 

considered in building the machine learning model. A great advantage of NCA is the improved 

computational efficiency that could be achieved in developing the model. Rather than the complete 

feature set, a subset has been considered without affecting the overall performance. 

 

Other than the practical methodology, the most important conceptual innovation of the present 

research is the consideration for Time-Delay Neural Networks (TDNN) - a variation of classical 

neural networks prepared to accommodate dynamics in flow mechanism, as the predictive model. The 

TDNN model has the ability to learn complex nonlinear decision surface. The performance of the 

TDNN over testing data from the solid characteristics in the flowline has been extensively evaluated. 

The TDNN achieved low values of NRMSE for all the models compared to the classical neural 

network models for the same testing data. The power of the TDNN lies in their ability to develop shift 

invariance for making optimal decisions. In general, this property holds significant promise for flow 

condition pattern recognition system. This could go a long way in helping to overcome the 

representational weakness of other conventional recognition systems faced with the uncertainty and 

variability in real-world data.  
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